Let [Formula: see text] be an odd prime and let [Formula: see text], [Formula: see text] and [Formula: see text] denote the three different versions of Thompson subgroups for a [Formula: see text]-group [Formula: see text]. In this paper, we first prove an extension of Glauberman’s replacement theorem [G. Glauberman, A characteristic subgroup of a p-stable group, Canad. J. Math. 20 (1968) 1101–1135, Theorem 4.1]. Second, we prove the following: Let [Formula: see text] be a [Formula: see text]-stable group and [Formula: see text]. Suppose that [Formula: see text]. If [Formula: see text] is a strongly closed subgroup in [Formula: see text], then [Formula: see text], [Formula: see text] and [Formula: see text] are normal subgroups of [Formula: see text]. Third, we show the following: Let [Formula: see text] be a [Formula: see text]-free group and [Formula: see text]. If [Formula: see text] is a strongly closed subgroup in [Formula: see text], then the normalizers of the subgroups [Formula: see text], [Formula: see text] and [Formula: see text] control strong [Formula: see text]-fusion in [Formula: see text]. We also prove a similar result for a [Formula: see text]-stable and [Formula: see text]-constrained group. Finally, we give a [Formula: see text]-nilpotency criteria, which is an extension of Glauberman–Thompson [Formula: see text]-nilpotency theorem.
In the present paper, the structure of a finite group G having a nonnormal T.I. subgroup H which is also a Hall πsubgroup is studied. As a generalization of a result due to Gow, we prove that H is a Frobenius complement whenever G is πseparable. This is achieved by obtaining the fact that Hall T.I. subgroups are conjugate in a finite group. We also prove two theorems about normal complements one of which generalizes a classical result of Frobenius.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.