Let A be a commutative Noetherian ring (with non-zero identity). The Cousin complex C(A) for A is described in [19, Section 2]: it is a complex of A-modules and A-homomorphismswith the property that, for each n ∈ N0 (we use N0 to denote the set of non-negative integers),Cohen–Macaulay rings can be characterized in terms of the Cousin complex: A is a Cohen–Macaulay ring if and only if C(A) is exact [19, (4.7)]. Also, the Cousin complex provides a natural minimal injective resolution for a Gorenstein ring (see [19,(5.4)]).
Let R be a commutative Noetherian ring. Let a and b be ideals of R and let N be a finitely generated R-module. We introduce a generalization of the b-finiteness dimension of f b a (N ) relative to a in the context of generalized local cohomology modules aswhere M is an R-module. We also show that f b a (N ) ≤ f b a (M, N ) for any R-module M . This yields a new version of the Local-Global Principle for annihilation of local cohomology modules. Moreover, we obtain a generalization of the Faltings Lemma.
Let [Formula: see text] be an ideal of a commutative Noetherian ring R, and let M and N be finitely generated R-modules. Let [Formula: see text] be the [Formula: see text]-finiteness dimension of N. In this paper, among other things, we show that for each [Formula: see text], (i) the set of associated prime ideals of generalized local cohomology module [Formula: see text] is finite, and (ii) [Formula: see text] is [Formula: see text]-cofinite if and only if [Formula: see text] is so. Moreover, we show that whenever [Formula: see text] is a principal ideal, then [Formula: see text] is [Formula: see text]-cofinite for all n.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.