Fluidic thrust vectoring (FTV) control is an innovative technique employed to affect the pitch control of an air vehicle or an unmanned air vehicle in the absence of conventional control surfaces such as elevators. The main motivation in using FTV is to render the aircraft low observable. In this work, a relatively new concept called co-flow type of FTV concept is investigated. Wherein, a high velocity secondary jet is injected into the boundary layer of the primary jet causing deflection of main primary jet thereby enabling generation of pitch moment. Two sets of numerical simulations studies were undertaken, one for different ratios of Coanda surface radius (R) and primary height (h prim) while the other for different ratios of secondary gap height (Dh) and primary height (h prim). The insight gained from simulations guided the design of a working FTV test rig. A static test rig was manufactured where blower and a compressor were used to provide primary and secondary flows, respectively. Comparison of vectored jet behaviour predicted by computational fluid dynamics analyses is found to be in agreement with those obtained through experimentation. Keywords Co-flow fluidic thrust vectoring Á Unmanned air vehicles Á Computational fluid dynamics
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.