Numerical results for the three mono-energetic transport coefficients required for a complete neoclassical description of stellarator plasmas have been benchmarked within an international collaboration. These transport coefficients are flux-surface-averaged moments of solutions to the linearised drift kinetic equation which have been determined using field-line-integration techniques, Monte Carlo simulations, a variational method employing Fourier-Legendre test functions and a finite difference scheme. The benchmarking has been successfully carried out for past, present and future devices which represent different optimisation strategies within the extensive configuration space available to stellarators.A qualitative comparison of the results with theoretical expectations for simple model fields is provided. The behaviour of the results for the mono-energetic radial and parallel transport coefficients can be largely understood from such theoretical considerations but the mono-energetic bootstrap current coefficient exhibits characteristics which have not been predicted.
Compact optimized stellarators offer novel solutions for confining high-β plasmas and developing magnetic confinement fusion. The three-dimensional plasma shape can be designed to enhance the magnetohydrodynamic (MHD) stability without feedback or nearby conducting structures and provide driftorbit confinement similar to tokamaks. These configurations offer the possibility of combining the steady-state low-recirculating power, external control, and disruption resilience of previous stellarators with the low aspect ratio, high β limit, and good confinement of advanced tokamaks. Quasiaxisymmetric equilibria have been developed for the proposed National Compact Stellarator Experiment (NCSX) with average aspect ratio 4-4.4 and average elongation ∼1.8. Even with bootstrap-current consistent profiles, they are passively stable to the ballooning, kink, vertical, Mercier, and neoclassicaltearing modes for β > 4%, without the need for external feedback or conducting walls. The bootstrap current generates only 1/4 of the magnetic rotational transform at β = 4% (the rest is from the coils); thus the equilibrium is much less non-linear and is more controllable than similar advanced tokamaks. The enhanced stability is a result of 'reversed' global shear, the spatial distribution of local shear, and the large fraction of externally generated transform. Transport simulations show adequate fast-ion confinement and thermal neoclassical transport similar to equivalent tokamaks. Modular coils have been designed which reproduce the physics properties, provide good flux surfaces, and allow flexible variation of the plasma shape to control the predicted MHD stability and transport properties.
A quasi-isodynamic stellarator with poloidally closed contours of the magnetic field strength B (Mikhailov 2002 Nucl. Fusion 42 L23) has been obtained by an integrated physics optimization comprising MHD and neoclassical theory. For a configuration with six periods and aspect ratio approximately 12, a main result is the attainability of an essentially MHD-stable high-β (β ≈ 0.085) plasma with low neoclassical transport, approximately vanishing bootstrap current in the long-mean-free-path regime and excellent α-particle confinement.
Fast particles in fusion plasmas may drive Alfvén modes unstable leading to fluctuations of the internal electromagnetic fields and potential loss of particles. Such instabilities can have an impact on the performance and the wall-load of machines with burning plasmas such as ITER. A linear benchmark for a toroidal Alfvén eigenmode (TAE) is done with 11 participating codes with a broad variation in the physical as well as the numerical models. A reasonable agreement of around 20% has been found for the growth rates. Also, the agreement of the eigenfunctions and mode frequencies is satisfying. however, they are found to depend strongly on the complexity of the used model.
An inter-machine dataset covering devices of different size and a variety of magnetic configurations is comprehensively analysed to assess the ranges of validity of neoclassical (NC) transport predictions in medium-to high density, high temperature discharges. A recently concluded benchmarking of calculations of transport coefficients from local NC theory [1] allows now a quantitative experimental energy transport study. While in earlier inter-machine studies of NC transport in 3D devices the electron energy transport at low densities has been investigated [2], this study focuses on the energy transport at medium to higher densities as anticipated when approaching reactor conditions. The validation approach as done here is to compare two fluxes: first, the 'NC flux' is determined with the NC transport coefficients and the gradients of the experimental density and temperature profiles. Second, the sources from deposition calculations considering heating and particle sources (the latter where available) yield the 'experimental flux'. Both fluxes are compared and the NC radial electric field E
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.