Ceratocystis laricicola and C. polonica are fungal symbionts of bark beetle species of the genus Ips that attack species of Larix and Picea, respectively, across Eurasia. Earlier studies found that these fungal species were morphologically identical, had similar isozymes patterns, and had identical internal transcribed spacer (ITS) sequences of the rDNA operon. We analyzed 27 isolates from Europe, southwestern Siberia (Russia) and Japan, representing the known geographic ranges of the two species. Phylogenetic analysis of the DNA sequences of a portion of the MAT-2 idiomorph showed these species to be distinct, with the Japanese isolates of C. laricicola having a sequence slightly different (5 bp) from those of the Russian and European isolates of C. laricicola. Sexual compatibility tests showed full interfertility among isolates of C. polonica from Europe, Russia and Japan, but isolates of C. polonica were not fully interfertile with isolates of C. laricicola. A Russian and a European isolate of C. laricicola mated with each other but not with the Japanese isolates of C. laricicola. Mature L. sibirica and P. obovata were inoculated with isolates of C. laricicola and C. polonica from Europe, Russia, and Japan, and measurement of lesions in the inner bark/cambium region demonstrated strong host specialization. The data suggest that the two fungal species are very closely related and are distinguished primarily by their physiological specialization to the hosts of their bark beetle vectors.
The problem of interaction of several coaxial vortex rings in an inviscid fluid is investigated numerically. It is assumed that the core shape of the vortex rings remain circular. At the initial time the rings are located at the same distance ρ0 from the center of the system. This distance is a control parameter of the problem. The cases of interaction of three, four, and five vortex rings are studied. It is shown, that in spite of the nonintegrability of the problem, there are certain domains of values ρ0 where the motion of the vortex rings is quasiperiodical. The transition from one such domain to another occurs always through a domain of chaotic interaction. The results of the interaction of the vortex rings are compared with the interaction of their plane analogies–vortex pairs.
The evolution of 4-dimensional and (4+D)-dimensional (D=1, 2) cosmological models based on the integrable Weyl geometry are considered numerically both for empty space-time and for scalar field with nonminimal coupling with gravity. In both cases nonsingular solutions exist only for the open exterior space and flat (with torus topology) interior space. It is shown that in the nonsingular case the scenario of dynamical dimension reduction is realized. Some characteristic features of the considered models and their possible generalizations are discussed.
Two-dimensional inviscid flows governed by a vortex pair in the presence of another point vortex or vortex pair on an unbounded plane are considered analytically and via numerical simulations. For some integrable cases of vortex motion, the stirring process of a fixed closed volume of surrounding fluid (‘‘atmosphere’’) initially trapped by vortex pair is investigated. Using the full classification of vortex movement types, it is shown that for all cases of vortex pair direct and exchange scattering the stirring process is regular. Some internal atmosphere regions conserve their existence and form after vortex interaction, resulting a ‘‘solitonlike’’ behavior. For general cases of vortex pair mutual trapping, the stirring process is chaotic. For limiting cases of vortex motions, the fluid particles reveal a regular behavior. A simple model for the qualitative description of recent experiments on vortex dipoles interaction is discussed. Although clearly an extreme idealization, the model appears to shed some light on what to expect in laboratory experiments.
Project SEE (Satellite Energy Exchange) is an international effort to organize a new space mission for fundamental measurements in gravitation, including tests of the equivalence principle (EP) by composition dependence (CD) and inverse-square-law (ISL) violations, determination of G, and a test for non-zero G-dot. The CD tests will be both at intermediate distances (a few metres) and at long distances (radius of the Earth, RE). Thus, a SEE mission would obtain accurate information self-consistently on a number of distinct gravitational effects. The EP test by CD at distances of a few metres would provide confirmation of earlier, more precise experiments. All other tests would significantly improve our knowledge of gravity. In particular, the error in G is projected to be less than 1 ppm. Project SEE entails launching a dedicated satellite and making detailed observations of free-floating test bodies within its experimental chamber.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.