BACKGROUND: Intraoperative neuromonitoring using tc-MEPs satisfactorily detects motor tract integrity changes during spinal surgery. However, tc-MEP is affected by anesthesia and other factors, in which the stimulation threshold increases because the waveform amplitude decreases over time with the accumulation and boluses of anesthetics. METHODS: We conducted a retrospective study of 139 patients. The average age was 30 years. Tc-MEPs were recorded bilaterally from the tibialis anterior muscle and the abductor hallucis muscle. Statistical tests were used to investigate the changes to evaluate anesthetic effects. RESULTS: There were no signifi cant differences in tc-MEP amplitude change (%) between the groups of propofol (13 %), remifentanil (22 %) and sufentanil (26 %, p < 0.01). Signifi cant differences were found between the groups of propofol, remifentanil, and sufentanil (20 %) and bolus sufentanil (-30 %), and bolus ketamine (730 %, p < 0.008). Major differences were observed between bolus sufentanil (-30 %) and bolus ketamine (730 %, p < 0.001). When comparing tc-MEPs with no amplitude, no signifi cant difference was found between the groups of propofol (26 %), remifentanil (24 %), and sufentanil (28 %, p < 0.007). Substantial difference was found between the groups of propofol, remifentanil, and sufentanil (mean 26 %) and the group where ketamine boluses were administered. We didn't observe any loss of amplitude (0 %, p < 0.0002). CONCLUSION: IONM may be useless in patients where boluses of sufentanil are administered and also with Medical Research Council grades 3 and below. Consider applying IONM in patients with severe spinal deformity along with a higher age of over 50 and neurological defi cit. Increasing stimulus intensity or facilitation techniques may be considered to improve the usefulness of tc-MEP. Our concept of fi ndings supports the neurophysiological monitoring fi ndings in other studies (Tab. 10, Ref. 45).
PURPOSE OF THE STUDYThis retrospective study investigated the significance of a combination of peak latency of waveform amplitude and waveform amplitude in association with spinal deformities. The correlation with postoperative neurologic deficit was evaluated too. MATERIAL AND METHODSBetween January 2007 and January 2018, a group of 113 patients was evaluated in the study who underwent spine surgery using intraoperative neurophysiological monitoring (IONM) focusing on transcranial motor evoked potential (tc-MEP) monitoring. The average age of the patients was 30 years. Tc-MEPs were recorded bilaterally from tibialis anterior muscle and the abductor hallucis muscle in 88 patients without neurological deficit and in 25 patients with neurological deficit. The peak latency of waveform amplitude was defined as the period from stimulation until the waveform amplitude reached its peak. The correlation with postoperative neurological deficit was examined separately for latency delays of 5% and 10% or more and in combination with a decrease in amplitude of 70% or more. We used the presence-absence paradigm to evaluate the disappearance of previously present tc-MEPs and amplitude latency delays. The correlation with the deterioration of amplitudes from baseline or the elevation of thresholds was not used. Statistical tests were used to investigate the changes. The cases in our study with significant tc-MEP alerts were reviewed against the evidence-based response checklist. RESULTSOf 113 patients, the decrease in amplitude of 70% or more was identified in the neurological deficit group in 64% vs. 36% in the normal neurological group (p < 0.001). The neurological deficit was observed in 7.96% of patients postoperatively. A decrease in intraoperative amplitude of 70% or more from previously present tc-MEP occurred in 40 cases, with 89% sensitivity, 64% specificity, 36% false positive rate (FPR), and 20% positive predictive value (PPV) for prediction of postoperative neurological deficit. The amplitude latency peak delay of 10% or more was observed in 41 cases from the group of patients with postoperative neurological deficit, with 100% sensitivity, 64% specificity, 36% FPR and 22% PPV. A combination of a decrease in amplitude of 70% or more from the previously present tc-MEP and a delay in amplitude latency peak of 10% or more resulted in 100% sensitivity, 49% specificity, 51% FPR and 10% PPV in the group of postoperative neurological deficit patients. DISCUSSIONIntraoperative tc-MEP alarm points have previously focused mainly on waveform amplitude. In our series, a criterion of an amplitude decrease of 70% or more from previously present tc-MEP was set as the alarm point. No alarm criterion for delay of peak latency of waveform amplitude was set before. We set a latency peak delay of 5% or more and 10% or more of waveform amplitude compared with the previously present tc-MEP as alarm criteria. This is the first study exploring the issue. We demonstrated the efficacy of latency peak of waveform amplitude together with the de...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.