Purpose. Determination of the effect of perforations in the hollow ferromagnetic rotor on dynamic characteristics of the electro-mechanical transducer.Methods. Calculation of the dynamic characteristics of the electromechanical transducer with a hollow smooth and perforated rotor was performed using the theory of the general electrical machine, as well as the numerical solutions of differential equations by finite elements' method in three-dimensional statement.Findings. The paper presents the research into the impact of rotor holes on the form of dynamic characteristics, which was carried out on the basis of comparing characteristics of the electromechanical transducer with those of smooth and perforated rotor. Introduction of rotor perforations brings about downward transposition of the mechanical dynamic characteristic parallel to itself. Starting the transducer with hollow ferromagnetic rotor, compared to starting the basic asynchronous motor, has a lower amplitude and smaller number of pulsations of electro-magnetic shock torque. We suggest calculating the dynamic characteristics of the electromechanical transducer with a hollow ferromagnetic rotor by way of combining the generalized theory of electrical machines with numerical solution of finite elements' method in three-dimensional statement. This approach was tested by juxtaposing the calculated and experimental data obtained for the physical model of the transducer with a hollow ferromagnetic rotor.Originality. Dynamic characteristics of the electromechanical transducer with a hollow smooth and perforated rotor were obtained for starting with ventilation load. Practical implications.The study results allow to expand the scientific theoretical basis of asynchronous machines with a ferromagnetic rotor and can be used to optimize the design and improve the efficiency of implementing electromechanical transducers with a hollow perforated rotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.