Twelve white rot fungi (WRF) strains were screened on agar plates for their ability to bleach humic acid (HA). Four fungal strains were selected and tested in liquid media for removal of HA. Bioremediation was investigated by HA color removal and changes in the concentration and molecular size distribution of HA by size exclusion chromatography. Trametes versicolor and Phanerochaete chrysosporium showed the highest HA removal efficiency, reaching about 80%. Laccase and manganese peroxidase were measured as extracellular enzymes and their relation to the HA removal by WRF was investigated. Results indicated that nitrogen limitation could enhance the WRF extracellular enzyme activity, but did not necessarily increase the HA removal by WRF. The mechanism of bioremediation by WRF was shown to involve biosorption of HA by fungal biomass and degradation of HA to smaller molecules. Also, contradicting previous reports, it was shown that the decolorization of HA by WRF could not necessarily be interpreted as degradation of HA. Biosorption experiments revealed that HA removal by fungal biomass is dependent not only on the amount of biomass as the sorbent, but also on the fungal species. The involvement of cytochrome P450 (CYP) enzymes was confirmed by comparing the HA removal capability of fungi with and without the presence of a CYP inhibitor. The ability of purified laccase from WRF to solely degrade HA was proven and the importance of mediators was also demonstrated.
This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.
Citation (APA)Zahmatkesh, M., Spanjers, H., & van Lier, J. B. (2017). A novel approach for application of white rot fungi in wastewater treatment under non-sterile conditions: immobilization of fungi on sorghum. Environmental Technology, 1-11. https://doi.org/10.1080/09593330.2017.1347718 Important noteTo cite this publication, please use the final published version (if applicable). Please check the document version above. CopyrightOther than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policyPlease contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. In this study, we tested a new approach to facilitate the application of white rot fungi (WRF) under non-sterile conditions, by introducing grain sorghum as carrier and sole carbon and nutrient source for WRF. To this end, Trametes versicolor was immobilized on sorghum, and its ability to remove humic acid (HA) from synthetic and real industrial wastewater was studied. HA removal was measured as colour reduction and also analysed via size exclusion chromatography (SEC). Under sterile conditions, 80% colour removal was achieved for both synthetic and real wastewater using immobilized WRF on sorghum, without adding any additional carbon or nutrient sources. Under non-sterile conditions, immobilized fungi could again remove 80% of the colour and reached a maximum of 40 U/L laccase activity. In contrast, non-immobilized fungi cultivated in non-sterile wastewater supplemented with additional nutrients, reached only 10% decolourization and maximum 5 U/L laccase activity. SEC analysis showed that bioremoval of HA by WRF was associated with degradation of HA. Finally, immobilized fungi were used to treat real wastewater, under non-sterile conditions, in a sequential batch order without renewing the immobilized fungi. Four batch feedings were conducted and 80%, 70%, 50% and 40% colour removal was achieved for each batch, respectively, over a total incubation period of 19 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.