Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by oxidative stress, impaired vascular function, and attenuated angiogenesis. The tight-skin (Tsk(-/+)) mouse is a model of SSc that displays many of the cellular features of the clinical disease. We tested the hypotheses that abnormal fibrillin-1 expression and chronic phospholipid oxidation occur in Tsk(-/+) mice and, furthermore, that these factors precipitate a prooxidant state, collagen-related protein expression, apoptosis, and mesenchymal transition in endothelial cells cultured on Tsk(-/+) extracellular matrix. Human umbilical vein endothelial cells were seeded on microfibrils isolated from skin of C57BL/6J (control) and Tsk(-/+) mice in the presence or absence of chronic pretreatment with the apolipoprotein Apo A-I mimetic D-4F (1 mg·kg(-1)·day(-1) ip for 6 to 8 wk). Nitric oxide-to-superoxide anion ratio was assessed 12 h after culture, and cell proliferation, apoptosis, and phenotype were studied 72 h after culture. Tsk(-/+) mice demonstrated abnormal "big fibrillin" expression (405 kDa) by Western blot analysis compared with control. Endothelial cells cultured on microfibrils prepared from Tsk(-/+) mice demonstrated reduced proliferation, a prooxidant state (reduced nitric oxide-to-superoxide anion ratio), increased apoptosis, and collagen-related protein expression associated with mesenchymal transition. Chronic D-4F pretreatment of Tsk(-/+) mice attenuated many of these adverse effects. The findings demonstrate that abnormal fibrillin-1 expression and chronic oxidative stress mediate endothelial mesenchymal transition in Tsk(-/+) mice. This mesenchymal transition may contribute to the reduction in angiogenesis that is known to occur in this model of SSc.
The tight skin mouse (Tsk−/+) is a model of scleroderma characterized by impaired vasoreactivity, increased oxidative stress, attenuated angiogenic response to VEGF, and production of the angiogenesis inhibitor angiostatin. Low level light therapy (LLLT) stimulates angiogenesis in myocardial infarction and chemotherapy-induced mucositis. We hypothesize repetitive LLLT restores vessel growth in the ischemic hindlimb of Tsk−/+ mice by attenuating angiostatin and enhancing angiomotin effects in vivo.
C57Bl/6J and Tsk−/+ mice underwent ligation of the femoral artery. Relative blood flow to the foot was measured using a laser Doppler imager. Tsk−/+ mice received LLLT (670 nm, 50 mW cm2, 30 J/cm2) for 10 min/day for 14 days. Vascular density was determined using lycopersicom lectin staining. Immunofluorescent labeling, western blot analysis, and immunoprecipitation were used to determine angiostatin and angiomotin expression.
Recovery of blood flow to the ischemic limb was reduced in Tsk−/+ compared with C57Bl/6 mice two weeks after surgery. LLLT treatment of Tsk−/+ mice restored blood flow to levels observed in C57Bl/6 mice. Vascular density was decreased, angiostatin expression was enhanced and angiomotin depressed in the ischemic hindlimb of Tsk−/+ mice. LLLT treatment reversed these abnormalities.
LLLT stimulates angiogenesis by increasing angiomotin and decreasing angiostatin expression in the ischemic hindlimb of Tsk−/+ mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.