Emerging highly pathogenic human coronaviruses (CoVs) represent a serious ongoing threat to the public health worldwide. The spike (S) proteins of CoVs are surface glycoproteins that facilitate viral entry into host cells via attachment to their respective cellular receptors. The S protein is believed to be a major immunogenic component of CoVs and a target for neutralizing antibodies (nAbs) and most candidate vaccines. Development of a safe and convenient assay is thus urgently needed to determine the prevalence of CoVs nAbs in the population, to study immune response in infected individuals, and to aid in vaccines and viral entry inhibitor evaluation. While live virus-based neutralization assays are used as gold standard serological methods to detect and measure nAbs, handling of highly pathogenic live CoVs requires strict biocontainment conditions in biosafety level-3 (BSL-3) laboratories. On the other hand, use of replication-incompetent pseudoviruses bearing CoVs S proteins could represent a safe and useful method to detect nAbs in serum samples under biosafety level-2 (BSL-2) conditions. Here, we describe a detailed protocol of a safe and convenient assay to generate vesicular stomatitis virus (VSV)-based pseudoviruses to evaluate and measure nAbs against highly pathogenic CoVs. The protocol covers methods to produce VSV pseudovirus bearing the S protein of the Middle East respiratory syndrome-CoV (MERS-CoV) and the severe acute respiratory syndrome-CoV-2 (SARS-CoV-2), pseudovirus titration, and pseudovirus neutralization assay. Such assay could be adapted by different laboratories and researchers working on highly pathogenic CoVs without the need to handle live viruses in the BSL-3 environment.
The Coronavirus Disease 2019 (COVID-19), caused by SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Antigen-specific responses are of unquestionable value for clinical management of COVID-19 patients. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized COVID-19 patients with different disease presentations (i.e., mild, moderate or severe), need for intensive care units (ICU) admission or outcomes (i.e., survival vs death). We show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Interestingly, significantly higher levels of nAbs as well as anti-S1 and -N IgG and IgM antibodies were found in patients with more severe symptoms, patients requiring admission to ICU or those with fatal outcomes. More importantly, early after symptoms onset, we found that the levels of anti-N antibodies correlated strongly with disease severity. Collectively, these findings provide new insights into the kinetics of antibody responses in COVID-19 patients with different disease severity.
The Coronavirus Disease 2019 (COVID-19), caused by the novel SARS-CoV-2, continues to spread globally with significantly high morbidity and mortality rates. Immunological surrogate markers, in particular antigen-specific responses, are of unquestionable value for clinical management of patients with COVID-19. Here, we investigated the kinetics of IgM, IgG against the spike (S) and nucleoproteins (N) proteins and their neutralizing capabilities in hospitalized patients with RT-PCR confirmed COVID-19 infection. Our data show that SARS-CoV-2 specific IgG, IgM and neutralizing antibodies (nAbs) were readily detectable in almost all COVID-19 patients with various clinical presentations. Notably, anti-S and -N IgG, peaked 20-40 day after disease onset, and were still detectable for at least up to 70 days, with nAbs observed during the same time period. Moreover, nAbs titers were strongly correlated with IgG antibodies. Significantly higher levels of nAbs as well as anti-S1 and N IgG and IgM antibodies were found in patients with more severe clinical presentations, patients requiring admission to intensive care units (ICU) or those with fatal outcomes. Interestingly, lower levels of antibodies, particularly anti-N IgG and IgM in the first 15 days after symptoms onset, were found in survivors and those with mild clinical presentations. Collectively, these findings provide new insights into the characteristics and kinetics of antibody responses in COVID-19 patients with different disease severity.
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) calls for an urgent development of effective and safe prophylactic and therapeutic measures. The spike (S) glycoprotein of severe acute respiratory syndrome-coronavirus (SARS-CoV-2) is a major immunogenic and protective protein and plays a crucial role in viral pathogenesis. In this study, we successfully constructed a synthetic codon-optimized DNA-based vaccine as a countermeasure against SARS-CoV-2, denoted VIU-1005. The design was based on a codon-optimized coding sequence of a consensus full-length S glycoprotein. The immunogenicity of the vaccine was tested in two mouse models (BALB/c and C57BL/6J). Th1-skewed systemic S-specific IgG antibodies and neutralizing antibodies (nAbs) were significantly induced in both models 4 weeks after three injections with 100 μg of the VIU-1005 vaccine via intramuscular needle injection but not intradermal or subcutaneous routes. Such immunization induced long-lasting IgG and memory T cell responses in mice that lasted for at least 6 months. Interestingly, using a needle-free system, we showed an enhanced immunogenicity of VIU-1005 in which lower or fewer doses were able to elicit significantly high levels of Th1-biased systemic S-specific immune responses, as demonstrated by the significant levels of binding IgG antibodies, nAbs and IFN-γ, TNF and IL-2 cytokine production from memory CD8+ and CD4+ T cells in BALB/c mice. Furthermore, compared to intradermal needle injection, which failed to induce any significant immune response, intradermal needle-free immunization elicited a robust Th1-biased humoral response similar to that observed with intramuscular immunization. Together, our results demonstrate that the synthetic VIU-1005 candidate DNA vaccine is highly immunogenic and capable of inducing long-lasting Th1-skewed humoral and cellular immunity in mice. Furthermore, we show that the use of a needle-free system could enhance the immunogenicity and minimize doses needed to induce protective immunity in mice, supporting further preclinical and clinical testing of this candidate vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.