As the Coronavirus Disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2, continues to spread rapidly around the world, there is a need for well validated serological assays that allow the detection of viral specific antibody responses in COVID-19 patients or recovered individuals. In this study, we established and used multiple indirect Enzyme Linked Immunosorbent Assay (ELISA)-based serological assays to study the antibody response in COVID-19 patients. In order to validate the assays we determined the cut off values, sensitivity and specificity of the assays using sera collected from pre-pandemic healthy controls, COVID-19 patients at different time points after disease-onset, and seropositive sera to other human coronaviruses (CoVs). The developed SARS-CoV-2 S1 subunit of the spike glycoprotein and nucleocapsid (N)-based ELISAs not only showed high specificity and sensitivity but also did not show any cross-reactivity with other CoVs. We also show that all RT-PCR confirmed COVID-19 patients tested in our study developed both virus specific IgM and IgG antibodies as early as week one after disease onset. Our data also suggest that the inclusion of both S1 and N in serological testing would capture as many potential SARS-CoV-2 positive cases as possible than using any of them alone. This is specifically important for tracing contacts and cases and conducting large-scale epidemiological studies to understand the true extent of virus spread in populations.
MERS-coronavirus is a novel zoonotic pathogen which spread rapidly to >25 countries since 2012. Its apparent endemicity and the wide spread of its reservoir host (dromedary camels) in the Arabian Peninsula highlight the ongoing public health threat of this virus. Therefore, development of effective prophylactic vaccine needs to be urgently explored given that there are no approved prophylactics or therapeutics for humans or animals to date. Different vaccine candidates have been investigated but serious safety concerns remain over protein or full-length spike (S) protein-based vaccines. Here, we investigated the immunogenicity of naked DNA vaccines expressing different fragments of MERS-CoV S protein in mice. We found that plasmids expressing full-length (pS) or S1-subunit (pS1) could induce significant levels of S1-specific antibodies (Abs) but with distinct IgG isotype patterns. Specifically, pS1 immunization elicited a balanced Th1/Th2 response and generally higher levels of all IgG isotypes compared to pS vaccination. Interestingly, only mice immunized with pS1 demonstrated significant S1-specific cellular immune response. Importantly, both constructs induced cross-neutralizing Abs against multiple strains of human and camel origins. These results indicate that vaccines expressing S1-subunit of the MERS-CoV S protein could represent a potential vaccine candidate without the possible safety concerns associated with full-length protein-based vaccines.
Background. Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted.Methods. We extended and optimized our previous recombinant adenovirus 5 (rAd5)-based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg + ) mice.Results. Immunization of hDPP4 Tg + mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1-but not rAd5-S1/F/CD40L-immunized mice exhibited marked pulmonary perivascular hemorrhage post-MERS-CoV challenge despite the observed protection.Conclusions. Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.
Since 2012, MERS-CoV has caused up to 2220 cases and 790 deaths in 27 countries with Saudi Arabia being the most affected country with~83.1% of the cases and~38.8% local death rate. Current serological assays such as microneutralization (MN), plaque reduction neutralization, immunofluorescence, protein microarray or pseudoparticle neutralization assays rely on handling of live MERS-CoV in high containment laboratories or need for expensive and special equipment and reagents and highly trained personnel which represent a technical hurdle for most laboratories in resource-limited MERS-CoV endemic countries. Here, we developed, compared and evaluated three different indirect ELISAs based on MERS-CoV nucleocapsid protein (N), spike (S) ectodomain (amino acids 1-1297) and S1 subunit (amino acids 1-725) and compared them with MN assay. The developed ELISAs were evaluated using large number of confirmed seropositive (79 samples) and seronegative (274 samples) MERS-CoV human serum samples. Both rS1-and rS-ELISAs maintained high sensitivity and specificity (≥90%) across a wider range of OD values compared to rN-ELISA. Moreover, rS1-and rS-based ELISAs showed better agreement and correlation with MN assay in contrast to rN-ELISA. Collectively, our data demonstrate that rS1-ELISA and rS-ELISA are more reliable than rN-ELISA and represent a suitable choice for seroepidemiological testing and surveillance in MERS-CoV endemic regions. Several MERS-CoV serological assays have been developed and https://doi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.