Abstract-This paper investigates the performance of an all-optical method for amplification gain control to be applied in the next generation of optical networks. An erbium-doped fiber amplifier is implemented in a simple and passive all-optical configuration known as optical gain-clamped optical amplifier (OA). The paper investigates the dynamic performance of the OA and discusses the interplay of amplifier dynamics with different traffic statistics. The investigation concerns exhaustive characterization of bit error rate performances under typical optical burst switching (OBS) traffic as well as special case of sudden power variation at the amplifier input. All obtained results show a reduction in the amplifier output power overshot compared to the case where the same OA operates without any gain stabilization technique. As an example, in the typical OBS traffic scenario, a reduction of 3 dB is observed.
Experimental studies of real optical burst traffic in WDM systems are performed with optical gain clamping for stabilizing the EDFA amplification. Impairments of power variation due to burst are shown to be negligible.
This paper demonstrates significant BER improvement in burst traffic transmission using optical-gain clamped amplifiers. Critical chaotic cases are identified for peculiar burst sequences and their impact in transmission is assessed.
In this paper we review progress in optical gain clamped waveguide amplifiers for applications to optical communications. We demonstrate that compact waveguide devices may offer advantages compared to standard fiber amplifiers. In particular we focus on the application of gain clamping and optical burst switching networks where physical impairments may occur due to variation of the input power.Peer ReviewedPostprint (published version
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.