Noncovalent interactions of cis- and trans-2-butene, as the smallest model systems of molecules with cis and trans double bonds, were studied to find potential differences in interactions of these molecules. The study was performed using quantum chemical methods including very accurate CCSD(T)/CBS method. We studied parallel and displaced parallel interactions in 2-butene dimers, in butane dimers, and between 2-butene and saturated butane. The results show the trend that interactions of 2-butene with butane are the strongest, followed by interactions in butane dimers, whereas the interaction in 2-butene dimers are the weakest. The strongest calculated interaction energy is between trans-2-butene and butane, with a CCSD(T)/CBS energy of -2.80 kcal mol(-1) . Interactions in cis-2-butene dimers are stronger than interactions in trans-2-butene dimers. Interestingly, some of the interactions involving 2-butene are as strong as interactions in a benzene dimer. These insights into interactions of cis- and trans-2-butene can improve understanding of the properties and processes that involve molecules with cis and trans double bonds, such as fatty acids and polymers.
Pt/TiO2 composites were synthesized by single-step ultrasonic spray pyrolysis (USP) at different temperatures. In an in-situ method, Pt and TiO2 particles were generated from tetra-n-butyl orthotitanate and chloroplatinic acid, and hydrothermally-prepared TiO2 colloidal dispersion served as Pt support in an ex-situ USP approach. USP-synthesized Pt/TiO2 composites were generated in the form of a solid mixture, morphologically organized in nesting huge hollow and small solid spheres, or TiO2 core/Pt shell regular spheroids by in-situ or ex-situ method, respectively. This paper exclusively reports on characteristic mechanisms of the formation of novel two-component solid composites, which are intrinsic from the USP approach and controlled precursor composition. The generation of the two morphological components within the in-situ approach, the hollow spheres and all-solid spheres, was indicated to be caused by characteristic sol-gel/solid phase transition of TiO2. Both the walls of the hollow spheres and the cores of all-solid ones consist of TiO2 matrix populated by 10 nm-sized Pt. On the other hand, spherical, uniformly-sized, Pt particles of a few nanometers in size created a shell uniformly deposited onto TiO2 spheres of ca. 150 nm size. Activities of the prepared samples in an oxygen reduction reaction and combined oxygen reduction and hydrogen evolution reactions were electrochemically tested. The ex-situ synthesized Pt/TiO2 was more active for oxygen reduction and combined oxygen reduction and hydrogen reactions in comparison to the in-situ Pt/TiO2 samples, due to better availability of Pt within a core/shell structure for the reactions.
311++G** and 6-31G**, for each method, have been performed, calculating interaction energies in (1) unsaturated/unsaturated systems (2-butene dimers), (2) unsaturated/saturated system (between butane and 2-butene) and (3) saturated/saturated (butane dimers). The calculated interaction energies are compared with accurate CCSD(T)/CBS energies. The data shows that most levels of theory have the highest errors for systems with butane dimers, and calculated interaction energies in these systems are overestimated. The best levels, overall for all systems, are BLYP-D3BJ/def2-QZVP and BLYP-D3BJ/cc-pVQZ with similar root mean square deviation (RMSD) values of 0.056 kcal mol −1 and 0.060 kcalmol −1 compared to CCSD(T) values. The best level for (1) 2-butene dimers is B3LYP-D3BJ/aug-cc-pVDZ; for (2) interactions between 2-butene and butane is BLYP-D3BJ/def2-SVP; while for (3) butane dimers is BLYP-D3BJ/def2-QZVP. The difference in calculated energies among several method are not high, however, it is important that most of the DFT methods overestimate interactions in butane dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.