We have measured the spin structure functions g p 2 and g d 2 and the virtual photon asymmetries A p 2 and A d 2 over the kinematic range 0.02 ≤ x ≤ 0.8 and 0.7 ≤ Q 2 ≤ 20 GeV 2 by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH3 and 6 LiD targets. Our measured g2 approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d p 2 and d n 2 are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x → 0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A2 is significantly smaller than the A2 < R(1 + A1)/2 limit.
Precise data on the neutron magnetic form factor G mn have been obtained with measurements of the ratio of cross sections of D(e, e ′ n) and D(e, e ′ p) up to momentum transfers of Q 2 = 0.9 (GeV/c) 2 . Data with typical uncertainties of 1.5% are presented. These data allow for the first time to extract a precise value of the magnetic radius of the neutron.
We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 distinct kinematic settings covering a range in momentum transfer of 0.4 < Q 2 < 5.5 (GeV/c) 2 . These measurements represent a significant contribution to the world's cross section data set in the Q 2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab. This data set shows good agreement with previous cross section measurements, indicating that if a here-to-fore unknown systematic error does exist in the cross section measurements then it is intrinsic to all such measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.