Original scientific paperThis paper presents an adaptive speed observer for an induction motor using an artificial neural network with a direct field-oriented control drive. The speed and rotor flux are estimated with the only assumption that from stator voltages and currents are measurable. The estimation algorithm uses a state observer combined with an intelligent adaptive mechanism based on a recurrent neural network (RNN) to estimate rotor speed. The stator and rotor resistances are estimated by a simple Proportional-Integrator (PI) controller, which reduces sensitivity to variations, due essentially to the influence of temperature. The proposed sensorless control scheme is tested for various operating conditions of the induction motor drive. Experimental results demonstrate a good robustness against load torque disturbances, the estimated fluxes and rotor speed converge to their true values, which guarantees that a precise trajectory tracking with the prescribed dynamics.Key words: Field oriented control, Induction motor drive, Recurrent neural network, Sensorless drive Adaptivni estimator brzine za bezsenzorsko vektorsko upravljanje asinkronim motorom zasnovan na umjetnoj neuronskoj mreži. Ovajčlanak opisuje adaptivni estimator brzine temeljen na umjetnoj neuronskoj mreži, koji se primijenjuje na asinkroni motor pogonjen izravnim vektorskim upravljanjem. Brzina i magnetski tok rotora estimiraju se uz pretpostavku dostupnosti mjerenja napona i struja statora. Algoritam koristi estimator stanja u kombinaciji s inteligentnim adaptivnim mehanizmom temeljenim na povratnoj neuronskoj mreži (RNN) kako bi se estimirala brzina rotora. Otpori statora i rotora estimiraju se jednostavnim Proporcionalno-Integralnim (PI) regulatorom,čime se smanjuje osjetljivost na varijacije uzrokovane utjecajem temperature. Predložena bezsenzorska upravljačka shema testirana je za različite radne uvjete asinkronog motora. Eksperimentalni rezultati pokazuju visoki stupanj robusnosti s obzirom na poremećaj momenta tereta, a estimirani tokovi i brzina rotora konvergiraju prema stvarnim vrijednostima što garantira precizno praćenje trajektorija uz zahtijevanu dinamiku.Ključne riječi: vektorsko upravljanje, asinkroni motor, povratna neuronska mreža, bezsenzorsko upravljanje
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.