The figure shows a test example with a single person. It demonstrates that our system tracks the pose as the person enters the room and even when he is fully occluded behind the wall. Top: Images captured by a camera colocated with the radio sensor, and presented here for visual reference. Middle: Keypoint confidence maps extracted from RF signals alone, without any visual input. Bottom: Skeleton parsed from keypoint confidence maps showing that we can use RF signals to estimate the human pose even in the presence of full occlusion.
This thesis demonstrates a new technology that can infer a person's emotions from RF signals reflected off his body. EQ-Radio transmits an RF signal and analyzes its reflections off a person's body to recognize his emotional state (happy, sad, etc.). The key enabler underlying EQ-Radio is a new algorithm for extracting the individual heartbeats from the wireless signal at an accuracy comparable to on-body ECG monitors. The resulting beats are then used to compute emotion-dependent features which feed a machine-learning emotion classifier. We describe the design and implementation of EQ-Radio, and demonstrate through a user study that its emotion recognition accuracy is on par with state-of-the-art emotion recognition systems that require a person to be hooked to an ECG monitor. I am grateful to the members of the NETMIT for their insightful discussions and to all the human subjects for their participation in our experiments.
This paper demonstrates a new technology that can infer a person's emotions from RF signals reflected off his body. EQ-Radio transmits an RF signal and analyzes its reflections off a person's body to recognize his emotional state (happy, sad, etc.). The key enabler underlying EQ-Radio is a new algorithm for extracting the individual heartbeats from the wireless signal at an accuracy comparable to on-body ECG monitors. The resulting beats are then used to compute emotion-dependent features which feed a machine-learning emotion classifier. We describe the design and implementation of EQ-Radio, and demonstrate through a user study that its emotion recognition accuracy is on par with state-of-theart emotion recognition systems that require a person to be hooked to an ECG monitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.