Introduction. Power transformers are the most important and the most expensive equipment used in transport and distribution of electrical energy. Their failure results in huge economic losses. Despite the great advances in the design of power equipment in recent years, the feeble link in the chain remains the insulation weakness of coil turns of the power transformer. The novelty of the proposed research consists in the development of a new procedure for diagnosing and localizing the occurrence of turn to turn short-circuits in the windings of three-phase power transformer. The main problems of the current differential relay are short circuits of one or more turns of a transformer winding. Hence a new approach using' the amplitude comparison between the negative sequence currents' is developed and a digital discriminator internal / external fault is applied to discriminate turn to turn faults among the other ones. The proposed procedure is based on the exploitation of the negative sequence currents. The purpose of using this new procedure is to identify small faults inside power transformer coils and to distinguish inner faults from the outer faults by using an ameliorate circuit. The method used in this paper is a novel algorithm which based on the comparison between the negative sequence current amplitudes and to calculate the corresponding phase angle shifts. The performance of the proposed procedure has been confirmed by MATLAB/Simulink environment. The results of simulation reveal the efficiency of the suggested procedure, and indicate that this procedure can provide fast and sensitive approach for detecting low level turn-to-turn faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.