Commercial harvests can threaten tree species harvested for their bark. Amphipterygium adstringens is a dioecious tree, endemic to the tropical dry forests of Mexico, where it is intensively harvested for its medicinal bark. Limited information hinders developing sustainable management strategies for A. adstringens. We assessed bark regeneration for male and female trees, and evaluated the effect of tree sex and diameter, debarking treatments and cutting seasons on bark regeneration and tree survival rates. Bark regeneration was higher for wet season harvested trees (vs. dry), regardless of their sex. Bark regeneration was higher on female than on male trees. There were significant interactions of harvest season, harvest treatment and tree sex diameter on bark regeneration and survival. Overall, the highest bark regeneration rates occurred in female trees with ≥20.1 cm diameter that were wet season harvested with a 50% debarking intensity. Consequently, wet season and intermediate intensity harvests appear to foster sound management, but we recommend against targeting exclusively a single demographic group (i.e., large female trees) due to potential negative impacts on species demography and bark supply. A grounded strategy for sustaining bark harvest would also need to take into account relevant aspects of local socio-ecological context, including harvest interactions with other land uses.
Temperate forests play a fundamental role in the provision, regulation, and support of hydrological environmental services, but they are subject to constant changes in land use (clearing, overgrazing, deforestation, and forest fires) that upset the hydrological balance. Through scenarios simulated with the Water Evaluation and Planning (WEAP) hydrological model, the present study analyzes the effects of forest fires and land use changes on the hydrological balance in the microwatersheds of central Mexico. The land use changes that took place between 1995 and 2021 were estimated, and projections based on the current scenario were made. Two trend scenarios were proposed for 2047: one with a positive trend (forest permanence) and the other with a negative trend (loss of cover from forest fires). The results show that with permanence or an increase in forest area, the surface runoff would decrease by 48.2%, increasing the base flow by 37% and the soil moisture by 2.3%. If forest is lost, surface runoff would increase up to 454%, and soil moisture would decrease by 27%. If the current forest decline trends continue, then there will be negative alterations in hydrological processes: a reduction in the interception of precipitation by the canopy and an increase in the velocity and flow of surface runoff, among others. The final result will be a lower amount of water being infiltrated into the soil and stored in the subsoil. The provision of hydrological environmental services depends on the maintenance of forest cover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.