Egg translocation and incubation in man-made nests (MMN) are common conservation practices through marine turtle hatcheries worldwide. These measures have been associated with reduced hatching rates, altered hatchling sex ratio, fetal dysmorphic anatomical features, and feeble hatchlings health. Previous studies have shown that MMN and natural nests (NN) provide different incubatory conditions. Therefore, incubatory challenges imposed by MMN conditions on fetal development could induce stress responses affecting hatchlings functional morphology later on life. There is no evidence of incubatory stress associated with conservation measures in turtle fetuses or hatchlings. Thus, in this paper we tested the hypothesis that MMN incubation exposes turtle fetuses to stressing conditions. Given that the hypothalamic-pituitary-interrenal axis begins functioning by day 11 of incubation in reptiles, our experiments explored the effects of incubatory conditions, rather than those associated with translocation, on fetal stress responses. We showed that Lepidochelys olivacea hatchlings incubated in MMN displayed reduced body weight, hypertrophic inter-renal glands, testicular hypotrophy and hypotrophic dorso-medial cortical pyramidal neurons, when compared with hatchlings emerging from NN. Furthermore, MMN hatchlings had higher serum levels of corticosterone at emergence, and displayed an attenuated acute stress response after traversing the beach. Therefore, the relocation of nests to protect them could negatively impact the health and survival of sea turtles. Thus, this action should only be undertaken when no alternative is available.
Nitrate-nitrogen (NO3-N) pollution related to anthropogenic activities is increasing in freshwater ecosystems. Knowledge about NO3-N sensitivity in freshwater wild fish is needed to understand the differential tolerance between species. Goodeinae is a subfamily of 41 endemic fishes that inhabit central Mexico, with 33 species in the IUCN red list and three extinct. Distributional patterns suggest tolerant and sensitive goodeines related to the conservation gradient of freshwater ecosystems. Four species with a differential distribution and tolerance were selected to evaluate their physiological responses to NO3-N. Fish were exposed to different NO3-N concentrations for 96 h and the median lethal concentration (LC50) was determined. Swimming disorders plus gill and liver histopathological indexes were estimated and incorporated into an Integrated Biomarker Response (IBR) for each species. Skiffia lermae (LC50 = 474.332 mg/L) and Xenotoca variata (LC50 = 520.273 mg/L) were more sensitive than Goodea atripinnis (LC50 = 953.049 mg/L) and Alloophorus robustus (LC50 = 1537.13 mg/L). The typical histological damage produced by NaNO3-N exposure was fusion of secondary lamellae in gills. This was present in all species and cellular degeneration was observed at the highest concentrations. Secondary lamellae aneurysms were only observed in G. atripinnis. Liver alterations included vascular dilation in hepatic sinusoids, hyperemia and nuclear hypertrophy; higher concentrations produced hepatocyte cytoplasmic vacuolation and reduced frequency of cell nuclei. Behavioral and histopathological alterations could explain the differential species sensitivity. The results suggest that species which preserve gill function and transfer the task of detoxification to the liver might have the best chance of surviving in polluted environments. Moreover, species previously considered as tolerant may be highly susceptible to NaNO3-N exposure. Therefore, it is necessary to closely monitor NaNO3-N concentrations in freshwater ecosystems and, if possible, reduce their levels to avoid the loss of wild populations.
Sea turtle egg relocation and hatchery incubation (hereafter termed ex situ incubation) is an effective strategy to protect clutches when in situ egg incubation is not viable. Nevertheless, it negatively affects the ontogenesis of male gonads and brain areas homologous to the mammalian hippocampus, as well as body size and fitness. Thus, it is imperative to analyze the effects of ex situ incubation on other developmental aspects and extend these observations to females. This work evaluated the effect of ex situ management on neurogenesis (cell proliferation in the dorsal and medial ventricular zones, neuronal integration in the dorsomedial and medial cortices), ovary cell proliferation, body size (mass and length) and self-righting ability. Additionally, this study examined if the incubation microenvironment is different between in situ and ex situ nests and whether it could contribute to explain the biological traits. An analysis of principal components showed differences in biological variables of hatchlings between in situ and ex situ clutches, driven by contrasting temperatures and silt composition. Each biological variable was also analyzed with linear mixed models using in situ vs. ex situ clutches, abiotic variables and their interaction. Turtles from ex situ clutches showed: (1) fewer proliferating cells in the dorsal and medial ventricular zones; (2) less mature neurons in the dorsomedial and medial cortices; (3) ovaries with a lesser number of proliferating cells; (4) lower body mass and length at emergence; and (5) slower self-righting time. Together, the results suggest that ex situ incubation in hatcheries is related to a slowing down of neurogenesis, ovariogenesis, body size and self-righting ability in hatchlings. Future studies should evaluate the effect of ex situ incubation on cognitive and reproductive performance to understand the long-term consequences of altered organogenesis. These studies should also disentangle the differential contribution of egg movement, reburial, nesting environment and parental origin to development. This information would likely result in better conservation strategies for sea turtles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.