LetKbe a nonempty, closed, and convex subset of a real Hilbert spaceH. Suppose thatT:K→2Kis a multivalued strictly pseudocontractive mapping such thatF(T)≠∅. A Krasnoselskii-type iteration sequence{xn}is constructed and shown to be an approximate fixed point sequence ofT; that is,limn→∞d(xn,Txn)=0holds. Convergence theorems are also proved under appropriate additional conditions.
Let q > 1 and let K be a nonempty, closed and convex subset of a q-uniformly smooth real Banach space E. Let T : K → CB(K) be a multi-valued strictly pseudo-contractive map with a nonempty fixed point set. A Krasnoselskii-type iteration sequence {x n } is constructed and proved to be an approximate fixed point sequence of T, i.e., lim n→∞ d(x n , Tx n ) = 0. This result is then applied to prove strong convergence theorems for a fixed point of T under additional appropriate conditions. Our theorems improve several important well-known results. MSC: 47H04; 47H06; 47H15; 47H17; 47J25
In this paper, we introduce a new iterative scheme by a hybrid method and prove a strong convergence theorem of a common element in the set of fixed points of a finite family of closed quasi-Bregman strictly pseudocontractive mappings and common solutions to a system of equilibrium problems in reflexive Banach space. Our results extend important recent results announced by many authors. MSC: 47H09; 47J25
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.