Metabolic heat produced by Thoroughbred racehorses during racing can rapidly elevate core body temperature (1°C/min). When environmental conditions are hot and humid, the normal physiological cooling mechanisms become ineffective. The heat accumulated may exceed a critical thermal maximum (estimated to be 42°C), which may trigger a complex pathophysiological cascade with potentially lethal consequences. This syndrome has been labelled exertional heat illness (EHI). EHI is described in humans, but has not been well documented in Thoroughbred racehorses. The clinical signs described in racehorses would suggest that the pathophysiological events affecting the central nervous (CNS) and gastrointestinal systems are similar to those described in humans. Clinical signs are progressive and include signs of endotoxaemia and increasing levels of CNS dysfunction. Initially, horses that may be mildly irritable (agitated, randomly kicking out) may progress to unmanageable (disorientation, severe ataxia, falling) and ultimately convulsions, coma and death. Currently, the approach to treatment is largely empirical and involves rapid and effective cooling, administration of drugs to provide sedation, administration of non-steroidal anti-inflammatory drugs to ameliorate the effects of endotoxaemia and glucocorticoids to stabilise cell membranes and reduce the effects of inflammation on the CNS. This review provides an overview of the current knowledge about EHI in Thoroughbred racehorses, suggests a likely pathophysiology of the syndrome in horses based on the current literature on heat illness in humans and horses, and outlines current treatment strategies being used to treat racehorses with clinical signs of EHI.
Exertional heat illness (EHI) is a syndrome that occurs when metabolic heat production from muscular contraction exceeds the rate at which it can be dissipated. Core body temperature rises to critical levels, causing hyperthermia and central nervous system dysfunction. Best practice for the prevention of EHI centres around early detection, rapid response and aggressive cooling. Advance planning enables risk mitigation measures. The more that is known about EHI in horses, the better prepared those in the positions of responsibility can be to anticipate events in which the risk of EHI may be elevated. This prospective, observational study investigated environmental risk factors associated with the occurrence of EHI. From 2014 to 2018, the number of horses exhibiting the symptoms of post-race EHI was recorded at 73 convenience sampled race meetings. Of the 4809 starters, the signs of EHI were recorded for 457. Thermal environmental data were measured and included ambient temperature, radiant heat, vapor pressure (humidity) and wind speed (WS). Mixed linear regression models were computed to assess the associations between the occurrence and incidence of post-race EHI and the four thermal environmental variables. The analysis showed that vapor pressure and WS had the largest effects on the occurrence of post-race EHI. The major limitations were that the race meetings selected were convenience sampled according to attendance by the first author and individual horse data were not available. EHI is influenced by a complex interaction of independently acting environmental variables, but warm, windless, humid days are most likely to result in the cases of EHI.Keywords ambient temperature; environmental variables; exertional heat illness; radiant heat; thoroughbred racehorses; vapour pressure; wet-bulb globe temperature; wind speed Abbreviations DB, Tdb ( C), dry-bulb air temperature; EHI, exertional heat illness; EHIRS, exertional heat illness race status (i.e. did at least one horse show post-race symptoms of EHI? [yes/no]); MRT ( C), mean radiant temperature; PEHI, percentage of horses showing the signs of post-race EHI; Tg ( C), globe temperature; Twb ( C), wet-bulb temperature; VP, vapour pressure (also referred to as absolute humidity, kPa); WBGT ( C), wet-bulb globe temperature; WS, wind speed (m/s)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.