Climate change is an important driver of species distribution and biodiversity. Understanding the response of plants to climate change is helpful to understand species differentiation and formulate conservation strategies. The genus Polyspora (Theaceae) has an ancient origin and is widely distributed in subtropical evergreen broad‐leaved forests. Studies on the impacts of climate change on species geographical distribution of Chinese Polyspora can provide an important reference for exploring the responses of plant groups in subtropical evergreen broad‐leaved forests with geological events and climate change in China. Based on the environmental variables, distribution records, and chloroplast genomes, we modeled the potential distribution of Chinese Polyspora in the Last Glacial Maximum, middle Holocene, current, and future by using MaxEnt‐ArcGIS model and molecular phylogenetic method. The changes in the species distribution area, centroid shift, and ecological niche in each periods were analyzed to speculate the response modes of Chinese Polyspora to climate change in different periods. The most important environmental factor affecting the distribution of Polyspora was the precipitation of the driest month, ranging from 13 to 25 mm for the highly suitable habitats. At present, highly suitable distribution areas of Polyspora were mainly located in the south of 25°N, and had species‐specificity. The main glacial refugia of the Chinese Polyspora might be located in the Ailao, Gaoligong, and Dawei Mountains of Yunnan Province. Jinping County, Pingbian County, and the Maguan County at the border of China and Vietnam might be the species differentiation center of the Chinese Polyspora . Moderate climate warming in the future would be beneficial to the survival of P. axillaris , P. chrysandra , and P. speciosa . However, climate warming under different shared socio‐economic pathways would reduce the suitable habitats of P. hainanensis and P. longicarpa .
Polyspora Sweet (Theaceae) are winter ornamental landscape plants native to southern and southeastern Asia, some of which have medicinal value. The chloroplast (cp) genome data of Polyspora are scarce, and the gene evolution and interspecific relationship are still unclear. In this study, we sequenced and annotated Polyspora chrysandra cp genome and combined it with previously published genomes for other Chinese Polyspora species. The results showed that cp genomes of six Chinese Polyspora varied in length between 156,452 bp (P. chrysandra) and 157,066 bp (P. speciosa), but all contained 132 genes, with GC content of 37.3%, and highly similar genes distribution and codon usage. A total of eleven intergenic spacer regions were found having the highest levels of divergence, and eight divergence hotspots were identified as molecular markers for Phylogeography and genetic diversity studies in Polyspora. Gene selection pressure suggested that five genes were subjected to positive selection. Phylogenetic relationships among Polyspora species based on the complete cp genomes were supported strongly, indicating that the cp genomes have the potential to be used as super barcodes for further analysis of the phylogeny of the entire genus. The cp genomes of Chinese Polyspora species will provide valuable information for species identification, molecular breeding and evolutionary analysis of genus Polyspora.
The Global Plant Conservation Strategy of the Convention on Biological Diversity calls for ''protection of 50% of the most important areas for plant diversity.'' All global biodiversity analyses have identified the mountains of northwestern Yunnan as a conservation priority for plant diversity. The challenge we were presented with was how to transform this sweeping global recognition into regional geographic priorities and measurable conservation action. This challenge is especially acute in Yunnan where there are no readily accessible data on the distribution and status of plant diversity, yet great conservation urgency due to the rapid pace of economic development. We used endangered and endemic species to represent plant diversity as a whole due to time and financial constraints. To identify conservation priorities, we relied on experts' knowledge, supplemented with a rapidly assembled plant diversity data base, rapid field assessments to fill knowledge gaps, and analyses of the spatial patterns of richness and habitat relationships. Ninety-eight endangered species and 703 endemic species occur in the project area. Experts identified nine Plant Diversity Conservation Areas for northwestern Yunnan, including eight specific geographies and one priority habitat. We found that the current nature reserve system is serving an important role in plant diversity protection, even though many of the reserves were not specifically designated for plant diversity considerations. This project provided a means for scientific experts to directly contribute to conservation decisionmaking by government and Non-Government Organizations, and essential information for the plant conservation in Northwestern Yunnan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.