Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topographies in a canonical anatomical space. Individual transformation matrices project information from individual anatomical spaces into the common model information space, preserving the geometry of pairwise dissimilarities between pattern vectors, and model cortical topography as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content. In this Perspective, we present the conceptual framework that motivates hyperalignment, its computational underpinnings for joint modeling of a common information space and idiosyncratic cortical topographies, and discuss implications for understanding the structure of cortical functional architecture.
Variation in cortical connectivity profiles is typically modeled as having a coarse spatial scale parcellated into interconnected brain areas. We created a high-dimensional common model of the human connectome to search for fine-scale structure that is shared across brains. Projecting individual connectivity data into this new common model connectome accounts for substantially more variance in the human connectome than do previous models. This newly discovered shared structure is closely related to fine-scale distinctions in representations of information. These results reveal a shared fine-scale structure that is a major component of the human connectome that coexists with coarse-scale, areal structure. This shared fine-scale structure was not captured in previous models and was, therefore, inaccessible to analysis and study.
Fine-grained functional organization of cortex is not well-conserved across individuals. As a result, individual differences in cortical functional architecture are confounded by topographic idiosyncrasies-i.e., differences in functional-anatomical correspondence. In this study, we used hyperalignment to align information encoded in topographically variable patterns to study individual differences in fine-grained cortical functional architecture in a common representational space. We characterized the structure of individual differences using three common functional indices, and assessed the reliability of this structure across independent samples of data in a natural vision paradigm. Hyperalignment markedly improved the reliability of individual differences across all three indices by resolving topographic idiosyncrasies and accommodating information encoded in spatially fine-grained response patterns. Our results demonstrate that substantial individual differences in cortical functional architecture exist at fine spatial scales, but are inaccessible with anatomical normalization alone.
Intelligent thought is the product of efficient neural information processing, which is embedded in fine-grained, topographically-organized population responses and supported by fine-grained patterns of connectivity among cortical fields. Previous work on the neural basis of intelligence, however, has focused on coarse-grained features of brain anatomy and function, because cortical topographies are highly idiosyncratic at a finer scale, obscuring individual differences in fine-grained connectivity patterns. We used a computational algorithm, hyperalignment, to resolve these topographic idiosyncrasies, and found that predictions of general intelligence based on fine-grained (vertex-by-vertex) connectivity patterns were markedly stronger than predictions based on coarse-grained (region-by-region) patterns. Intelligence was best predicted by fine-grained connectivity in the default and frontoparietal cortical systems, both of which are associated with self-generated thought. Previous work overlooked fine-grained architecture because existing methods couldn't resolve idiosyncratic topographies, preventing investigation where the keys to the neural basis of intelligence are more likely to be found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.