The possibility of using tires as active sensors opens the door to a huge number of different ways to accomplish this goal. In this case, based on a tire equipped with strain sensors, also known as an Intelligent Tire, relevant vehicle dynamics information can be provided. The purpose of this research is to improve the strain-based methodology for Intelligent Tires to estimate all tire forces, based only on deformations measured in the contact patch. Firstly, through an indoor test rig data, an algorithm has been developed to pick out the relevant features of strain data and correlate them with tire parameters. This information of the tire contact patch is then transmitted to a fuzzy logic system to estimate the tire parameters. To evaluate the reliability of the proposed estimator, the well-known simulation software CarSim has been used to back up the estimation results. The software CarSim has been used to provide the vehicle parameters in complex maneuvers. Finally, the estimations have been checked with the simulation results. This approach has enabled the behaviour of the intelligent tire to be tested for different maneuvers and velocities, providing key information about the tire parameters directly from the only contact that exists between the vehicle and the road.
Tires are essential components of vehicles and are able to transmit traction and braking forces to the contact patch, contribute to directional stability, and also help to absorb shocks. If these components can provide information related to the tire–road interaction, vehicle safety can be increased. This research is focused on developing the tire as an active sensor capable to provide its functional parameters. Therefore, in this work, we studied strain-based measurements on the contact patch to develop an algorithm to compute the wheel velocity at the contact point, the effective rolling radius and the contact length on dynamic situations. These parameters directly influence the dynamics of wheel behavior which nowadays is not clearly defined. Herein, hypotheses have been assumed based on previous studies to develop the algorithm. The results expose to view an experimental test regarding influence of the tire operational condition (slip angle, vertical load, and rolling velocity) onto the computed parameters. This information is used to feed a fuzzy logic system capable of estimating the effective radius and contact length. Furthermore, a verification process has been carried out using CarSim simulation software to get the inputs for the fuzzy logic system at complex maneuvers.
Automatic systems are increasingly being applied in the automotive industry to improve driving safety and passenger comfort, reduce traffic and increase energy efficiency. The objective of this work is focused on improving the automatic brake assistance systems of motor vehicles trying to imitate human behaviour but correcting possible human errors such as distractions, lack of visibility or time reaction. The proposed system can optimise the intensity of the braking according to the available distance to carry out the manoeuvre and the vehicle speed to be as less aggressive as possible, thus giving priority to the comfort of the driver. A series of tests are carried out in this work with a vehicle instrumented with sensors that provide real-time information about the braking system. The data obtained experimentally during the dynamic tests are used to design an estimator using the Artificial Neural Network (ANN) technique. This information makes it possible to characterise all braking situations based on the pressure of the brake circuit, the type of manoeuvre and the test speed. Thanks to this ANN, it is possible to estimate the requirements of the braking system in real driving situations and carry out the manoeuvres automatically. Experiments and simulations verified the proposed method for the estimation of braking pressure in real deceleration scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.