A duplication variant within middle-ear-specific gene A2ML1 co-segregates with otitis media in an indigenous Filipino pedigree (LOD score=7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by three otitis-prone European- and Hispanic-American children, but is absent in non-otitis-prone children and >62,000 next-generation sequences. Seven additional A2ML1 variants were identified in six otitis-prone children. Collectively our studies support a role for A2ML1 in the pathophysiology of otitis media.
Non-secretor status due to homozygosity for the common FUT2 variant c.461G>A (p.Trp154*) is associated with either risk for autoimmune diseases or protection against viral diarrhea and HIV. We determined the role of FUT2 in otitis media susceptibility by obtaining DNA samples from 609 multi-ethnic families and simplex case subjects with otitis media. Exome and Sanger sequencing, linkage analysis, and Fisher exact and transmission disequilibrium tests (TDT) were performed. The common FUT2 c.604C>T (p.Arg202*) variant co-segregates with otitis media in a Filipino pedigree (LOD ¼ 4.0). Additionally, a rare variant, c.412C>T (p.Arg138Cys), is associated with recurrent/chronic otitis media in European-American children (p ¼ 1.2 3 10 À5) and US trios (TDT p ¼ 0.01). The c.461G>A (p.Trp154*) variant was also overtransmitted in US trios (TDT p ¼ 0.01) and was associated with shifts in middle ear microbiota composition (PERMANOVA p < 10 À7) and increased biodiversity. When all missense and nonsense variants identified in multi-ethnic US trios with CADD > 20 were combined, FUT2 variants were over-transmitted in trios (TDT p ¼ 0.001). Fut2 is transiently upregulated in mouse middle ear after inoculation with non-typeable Haemophilus influenzae. Four FUT2 variants-namely p.Ala104Val, p.Arg138Cys, p.Trp154*, and p.Arg202*-reduced A antigen in mutant-transfected COS-7 cells, while the nonsense variants also reduced FUT2 protein levels. Common and rare FUT2 variants confer susceptibility to otitis media, likely by modifying the middle ear microbiome through regulation of A antigen levels in epithelial cells. Our families demonstrate marked intra-familial genetic heterogeneity, suggesting that multiple combinations of common and rare variants plus environmental factors influence the individual otitis media phenotype as a complex trait.
Objective To identify genetic and environmental risk factors for otitis media in an indigenous Filipino population Study Design Cross-sectional study Setting Indigenous Filipino community Subjects and Methods Clinical history and information on breastfeeding, tobacco smoke exposure and swimming were obtained from community members. Heads of households were interviewed for family history and personal beliefs on ear health. Height and weight were measured. Otoscopic findings were described for presence and character of perforation or discharge. An A2ML1 duplication variant that confers otitis media susceptibility was Sanger-sequenced in all DNA samples. Co-occurrence of middle ear bacteria detected by 16S rRNA gene sequencing was determined according to A2ML1 genotype and social cluster. Results The indigenous Filipino population has a ~50% prevalence of otitis media. Young age was associated with otitis media (4 age strata; p=0.004), however age was non-significant as a bi-stratal or continuous variable. There was no association between otitis media and gender, body mass index, breastfeeding, tobacco exposure or deep swimming. In multivariate analyses, A2ML1 genotype is the strongest predictor of otitis media, with an odds ratio of 3.7 (95%CI: 1.3, 10.8; p=0.005). When otitis media diagnoses were plotted across ages, otitis media was observed within the first year of life and chronic otitis media persisted up to adulthood, particularly in A2ML1 variant carriers. Conclusion Among indigenous Filipinos, A2ML1 genotype is the primary risk factor for otitis media and main determinant of disease progression, although age, the middle ear microbiome and social clusters might modulate the effect of the A2ML1 genotype.
BackgroundPreviously rare A2ML1 variants were identified to confer otitis media susceptibility in an indigenous Filipino community and in otitis-prone US children. The goal of this study is to describe differences in the middle ear microbiome between carriers and non-carriers of an A2ML1 duplication variant that increases risk for chronic otitis media among indigenous Filipinos with poor health care access.MethodsEar swabs were obtained from 16 indigenous Filipino individuals with chronic otitis media, of whom 11 carry the A2ML1 duplication variant. Ear swabs were submitted for 16S rRNA gene sequencing.ResultsGenotype-based differences in microbial richness, structure, and composition were identified, but were not statistically significant. Taxonomic analysis revealed that the relative abundance of the phyla Fusobacteria and Bacteroidetes, and genus Fusobacterium were nominally increased in carriers compared to non-carriers, but were non-significant after correction for multiple testing. We also detected rare bacteria including Oligella that was reported only once in the middle ear.ConclusionsThese findings suggest that A2ML1-related otitis media susceptibility may be mediated by changes in the middle ear microbiome. Knowledge of middle ear microbial profiles according to genetic background can be potentially useful for therapeutic and prophylactic interventions for otitis media and can guide public health interventions towards decreasing otitis media prevalence within the indigenous Filipino community.Electronic supplementary materialThe online version of this article (doi:10.1186/s40249-016-0189-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.