Purpose: Spectral CT uses energy-dependent measurements that enable material discrimination in addition to reconstruction of structural information. Flat-panel detectors (FPDs) have been widely used in dedicated and interventional systems to deliver high spatial resolution, volumetric cone-beam CT (CBCT) in compact and OR-friendly designs. In this work, we derive a model-based method that facilitates high-resolution material decomposition in a spectral CBCT system equipped with a prototype dual-layer FPD. Through high-fidelity modeling of multilayer detector, we seek to avoid resolution loss that is present in more traditional processing and decomposition approaches. Method: A physical model for spectral measurements in dual-layer flat-panel CBCT is developed including layer-dependent differences in system geometry, spectral sensitivities, and detector blur (e.g., due to varied scintillator thicknesses). This forward model is integrated into a model-based material decomposition (MBMD) method based on minimization of a penalized weighted leastsquared (PWLS) objective function. The noise and resolution performance of this approach was compared with traditional projection-domain decomposition (PDD) and image-domain decomposition (IDD) approaches as well as one-step MBMD with lower-fidelity models that use approximated geometry, projection interpolation, or an idealized system geometry without system blur model. Physical studies using high-resolution three-dimensional (3D)-printed water-iodine phantoms were conducted to demonstrate the high-resolution imaging performance of the compared decomposition methods in iodine basis images and synthetic monoenergetic images. Results: Physical experiments demonstrate that the MBMD methods incorporating an accurate geometry model can yield higher spatial resolution iodine basis images and synthetic monoenergetic images than PDD and IDD results at the same noise level. MBMD with blur modeling can further improve the spatial-resolution compared with the decomposition results obtained with IDD, PDD, and MBMD methods with lower-fidelity models. Using the MBMD without or with blur model can increase the absolute modulation at 1.75 lp/mm by 10% and 22% compared with IDD at the same noise level. Conclusion:The proposed model-based material decomposition method for a dual-layer flat-panel CBCT system has demonstrated an ability to extend high-resolution performance through sophisticated detector modeling including the layer-dependent blur. The proposed work has the potential to not only facilitate high-resolution spectral CT in interventional and dedicated CBCT systems, but may also provide the opportunity to evaluate different flat-panel design trade-offs including multilayer FPDs with mismatched geometries, scintillator thicknesses, and spectral sensitivities.
As the expansion of Cone Beam CT (CBCT) to new interventional procedures continues, the burdensome challenge of metal artifacts remains. Photon starvation and beam hardening from metallic implants and surgical tools in the f ield of view can result in the anatomy of interest being partially or fully obscured by imaging artifacts. Leveraging the flexibility of modern robotic CBCT imaging systems, implementing non-circular orbits designed for reducing metal artifacts by ensuring data-completeness during acquisition has become a reality. Here, we investigate using non-circular orbits to reduce metal artifacts arising from metallic hip prostheses when imaging pelvic anatomy. As a f irst proof-ofconcept, we implement a sinusoidal and a double-circle-arc orbit on a CBCT test bench, imaging a physical pelvis phantom, with two metal hip prostheses, housing a 3D-printed iodine-filled radial line-pair target. A standard circular orbit implemented with the CBCT test bench acted as comparator. Imaging data collection and processing, geometric calibration and image reconstruction was completed using in-house developed software programs. Imaging with the standard circular orbit, image artifacts were observed in the pelvic bones and only 33 out of the possible 45 line-pairs of the radial line-pair target were partially resolvable in the reconstructed images. Comparatively, imaging with both the sinusoid and double-circle-arc orbits reduced artifacts in the surrounding anatomy and enabled all 45 line-pairs to be visibly resolved in the reconstructed images. These results indicate the potential of non-circular orbits to assist in revealing previously obstructed structures in the pelvic region in the presence of metal hip prosthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.