The damping ratio plays a main role in the vibration of membrane structures. In order to study the damping force of air application to membrane structures, this present paper investigated the vibration response of a membrane structure subjected to impact loads. Eight experiments with the application of different tension forces to a tension membrane structure were conducted, and the impact load was simulated using a rigid bullet with a certain velocity. The displacement data were obtained using a laser displacement meter. FEM was used to simulate the vibration, and the results had good agreement. The results show that the effect of air applied to a prestressed membrane was equivalent to viscous damping, and the damping force was determined using the air. The damping ratio was proportional to the density of the air over the density of the membrane. The parameter of the coefficient could be determined using the geometry of the structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.