Metastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in enhancer activity between primary and metastatic tumors in human patients as well as near-isogenic pairs of high and low lung-metastatic osteosarcoma cells. We term these regions Metastatic Variant Enhancer Loci (Met-VELs). Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster non-randomly in the genome, indicating that activity of these enhancers and their associated gene targets are positively selected. As evidence of this causal association, osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL-associated gene expression via pharmacologic BET inhibition, by knockdown of AP-1 transcription factors that occupy Met-VELs, and by knockdown or functional inhibition of individual genes activated by Met-VELs, such as coagulation factor III/tissue factor (F3). We further show that genetic deletion of a single Met-VEL at the F3 locus blocks metastatic cell outgrowth in the lung. These findings indicate that Met-VELs and the genes they regulate play a functional role in metastasis and may be suitable targets for anti-metastatic therapies.
It has been long-established that cancer and thrombosis are linked, but the exact underlying pathological mechanism remains to be unraveled. As the initiator of the coagulation cascade, the transmembrane glycoprotein tissue factor (TF) has been intensely investigated for its role in cancer-associated thrombosis and cancer progression. TF expression is regulated by both specific oncogenes and environmental factors, and it is shown to regulate primary growth and metastasis formation in a variety of cancer models. In clinical studies, TF has been shown to be overexpressed in most cancer types and is strongly associated with disease progression. While TF clearly associates with cancer progression, a prominent role for TF in the development of cancer-associated thrombosis is less clear. The current concept is that cancer-associated thrombosis is associated with the secretion of tumor-derived TF-positive extracellular vesicles in certain tumor types. To date, many therapeutic strategies to target TF—both in preclinical and clinical phase—are being pursued, including targeting TF or the TF:FVIIa complex by itself or by exploiting TF as a docking molecule to deliver cytotoxic compounds to the tumor. In this review, the authors summarize the current understanding of the role of TF in both cancer progression and cancer-associated thrombosis, and discuss novel insights on TF as a therapeutic target as well as a biomarker for cancer progression and VTE.
Background Glioblastoma patients are considered to be at high risk of venous thromboembolism (VTE) and major bleeding (MB), although reliable incidence estimates are lacking. Moreover, the risk of arterial thromboembolism (ATE) in these patients is largely unknown. Our aim was to assess the cumulative incidence, predictors, and prognostic impact of VTE, ATE, and MB on subsequent complications and mortality. Methods Cohort study of 967 consecutive patients diagnosed with glioblastoma between 2004–2020 in two hospitals. Patients were followed from 6 months before date of histopathological glioblastoma diagnosis up to 2 years after, or until an outcome of interest (VTE, ATE, and MB) or death occurred, depending on the analysis. Cumulative incidences were estimated with death as competing risk. Cox regression was used to identify predictors and the prognostic impact. Results A total of 101 patients were diagnosed with VTE, 50 with ATE, and 126 with MB during a median follow‐up of 15 months (interquartile range 9.0–22). The adjusted 1‐year cumulative incidence of VTE was 7.5% (95% confidence interval [CI] 5.9–9.3), of ATE 4.1% (95% CI 3.0–5.6), and of MB 12% (95% CI 9.6–14). Older age, type of surgery, and performance status were predictors of VTE. Incident VTE during follow‐up was associated with MB (adjusted HR 4.7, 95% CI 2.5–9.0). MB and VTE were associated with mortality (adjusted HR 1.7, 95% CI 1.3–2.1 and 1.3, 95% CI 1.0–1.7, respectively). Conclusion We found considerable incidences of VTE and MB in glioblastoma patients, with both complications associated with poorer prognosis. Our observations emphasize the need for prospective studies to determine optimal thromboprophylaxis and VTE treatment strategy in these patients.
In the version of this article initially published, the numbers on the y-axis of Figure 2b were incorrect by a power of 10, and the numbers in the text describing the frequency of MSI-H tumors were also incorrect. The original text read: "Still lower, but detectable, frequencies of MSI-H were observed in 12 other cancer types; collectively, one or more individual MSI-H tumors were identified in 16 of the 18 cancer types examined".
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.