Power amplifiers in modern and future communications should be able to handle different modulation standards at different frequency bands, and in addition, to be compatible with the previous generations. This paper reviews the recent design techniques that have been used to operate dual-band amplifiers and in particular the Doherty amplifiers. Special attention is focused on the design methodologies used for power splitters, phase compensation networks, impedance inverter networks and impedance transformer networks of such power amplifier. The most important materials of the dual-band Doherty amplifier are highlighted and surveyed. The main problems and challenges covering dual-band design concepts are presented and discussed. In addition, improvement techniques to enhance such operations are also exploited. The study shows that the transistor parasitic has a great impact in the design of a dual-band amplifier, and reduction of the transforming ratio of the inverter simplifies the dual-band design. The offset line can be functionally replaced by a Π-network in dual-band design rather than T-network.
<p class="Default">The distributed object decision (DOD) was applied to choose a single solution for problem among many complexes solutions. Most of DOD systems depend on traditional technique like small form factor optical (SFFO) method and scalable and oriented fast-based local features (SOFF) method. These two methods were statistically complex and depended to an initial value. In this paper proposed new optimal technical called gray wolf optimization (GWO) which is used to determine threshold of sensor decision rules from fusion center. The new algorithm gave better performance for fusion rule than numerical results. The results are providing to demonstrate of fusion system reduced of bayes risk by a high rate of 15%-20%. This algorithm also does not depend on the initial values and shows the degree of complexity is better than other algorithms.</p>
A new proposed method is presented, where multiple antennas have been applied into HIPERLAN/2 system in addition to employing space-time diversity technique, especially the Alamouti technique. The suggested approach is used to cancel or reduce the effect of the transmitted power using a feedback signal process within the transceiver unit, especially when the antennas are closely located and working in full-mode duplexing. Several parameters including the transmitted power, the received power, and the feedback accuracy have been considered for testing the performance of the system in term of the signal to noise ratio (SNR) versus bit error rate (BER). A software programme using MATLAB and Simulink is implemented to evaluate the proposed method. The results showed that the system performance is heavily dependent on the amount of the mismatch in the feedback, the received power, and the transmitted power. The performance of the system decreases as the feedback accuracy increases when the transmitted power and the received power are constant. At the same time, the performance of the system decreases as the transmitted power increases when the received power and the mismatch are constant. Finally, the increase in the received power enhances the system performance when the other parameters are constant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.