Summary Background Data for front-line health-care workers and risk of COVID-19 are limited. We sought to assess risk of COVID-19 among front-line health-care workers compared with the general community and the effect of personal protective equipment (PPE) on risk. Methods We did a prospective, observational cohort study in the UK and the USA of the general community, including front-line health-care workers, using self-reported data from the COVID Symptom Study smartphone application (app) from March 24 (UK) and March 29 (USA) to April 23, 2020. Participants were voluntary users of the app and at first use provided information on demographic factors (including age, sex, race or ethnic background, height and weight, and occupation) and medical history, and subsequently reported any COVID-19 symptoms. We used Cox proportional hazards modelling to estimate multivariate-adjusted hazard ratios (HRs) of our primary outcome, which was a positive COVID-19 test. The COVID Symptom Study app is registered with ClinicalTrials.gov , NCT04331509 . Findings Among 2 035 395 community individuals and 99 795 front-line health-care workers, we recorded 5545 incident reports of a positive COVID-19 test over 34 435 272 person-days. Compared with the general community, front-line health-care workers were at increased risk for reporting a positive COVID-19 test (adjusted HR 11·61, 95% CI 10·93–12·33). To account for differences in testing frequency between front-line health-care workers and the general community and possible selection bias, an inverse probability-weighted model was used to adjust for the likelihood of receiving a COVID-19 test (adjusted HR 3·40, 95% CI 3·37–3·43). Secondary and post-hoc analyses suggested adequacy of PPE, clinical setting, and ethnic background were also important factors. Interpretation In the UK and the USA, risk of reporting a positive test for COVID-19 was increased among front-line health-care workers. Health-care systems should ensure adequate availability of PPE and develop additional strategies to protect health-care workers from COVID-19, particularly those from Black, Asian, and minority ethnic backgrounds. Additional follow-up of these observational findings is needed. Funding Zoe Global, Wellcome Trust, Engineering and Physical Sciences Research Council, National Institutes of Health Research, UK Research and Innovation, Alzheimer's Society, National Institutes of Health, National Institute for Occupational Safety and Health, and Massachusetts Consortium on Pathogen Readiness.
The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.[Supplemental material is available for this article.]Notwithstanding the considerable advancements in our understanding of the molecular genetic basis of cancer, in the majority of cancer-associated genomic regions, the responsible protein-coding genes have not been identified yet. The discovery of short (19-22 nt), noncoding RNAs (ncRNAs)-called microRNAs (miRNAs) (Ambros 2001)-not only revealed a novel mechanism of gene regulation but also led to the identification of miRNAs directly involved in cancer development (Spizzo et al. 2009). It is therefore plausible that as-yet-unidentified members of the broader category of ncRNA mapping to cancer-associated genomic regions play ratelimiting roles in tumor initiation and/or progression (Rinn and Chang 2012). For instance, we previously reported that highly conserved genomic regions (ultraconserved regions, or UCRs) (Bejerano et al. 2004) are frequently transcribed as long (>200 bp) ncRNAs (lncRNAs) in both normal and tumor tissues (Calin et al. 2007). Furthermore, germline mutations, as well as single nucleotide polymorphisms (SNPs) in ultraconserved ncRNAs, were found to occur more frequently in patients with colon cancer and chronic leukemia than in the general population (Wojcik et al. 2010).The rs6983267 SNP, mapping to the 8q24.21 chromosomal region, has been consistently associated with an increased risk of colorectal cancer (CRC) (Haiman et al. 2007): The G allele was associated with greater predisposition to CRC than the T allele (odds ratios of 1.27 and 1.47 for heterozygotes and homozygotes, respectively; P = 1.27 3 10 À14 ) (Tomlinson et al. 2007). The increased cancer risk from this SNP variant was also observed in other cancer types, including prostate, ovarian, and inflammatory breast cancer (Ghoussaini et al. 2008;Bertucci et al. 2012). Despite the consistent association between rs6983267 and cancer risk, the underlying molecular and cellular mechanisms remain largely unknown. The genomic region spanning rs6983267 was found to contain DNA (Pom...
Background BAP1 is a nuclear deubiquitinase that regulates gene expression, transcription, DNA repair, and more. Several findings underscore the apparent “driver” role of BAP1 in malignant mesothelioma (MM). However the reported frequency of somatic BAP1 mutations in MM varies considerably, a discrepancy that appeared related to either methodological or ethnical differences across various studies. Methods To address this discrepancy, we carried out comprehensive genomic and immunohistochemical (IHC) analyses to detect somatic BAP1 gene alterations in 22 frozen MM biopsies from US MM patients. Results By combining Sanger sequencing, Multiplex Ligation-Dependent Probe Amplification, copy number analysis and cDNA sequencing, we found alteration of BAP1 in 14/22 biopsies (63.6%). No changes in methylation were observed. IHC revealed normal nuclear BAP1 staining in the 8 MM containing wild-type BAP1, while no nuclear staining was detected in the 14 MM biopsies containing tumor cells with mutated BAP1. Thus, IHC results were in agreement with those obtained by genomic analyses. We then extended IHC analysis to an independent cohort of 70 MM biopsies, of which there was insufficient material to perform molecular studies. IHC revealed loss of BAP1 nuclear staining in 47 out of these 70 MM biopsies (67.1%). Conclusions Our findings conclusively establish BAP1 as the most commonly mutated gene in MM, regardless of ethnic background or other clinical characteristics. Our data point to IHC as the most accessible and reliable technique to detect BAP1 status in MM biopsies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.