MicroRNAs (miRNAs) are a class of small noncoding RNAs that control gene expression by targeting mRNAs and triggering either translation repression or RNA degradation. Their aberrant expression may be involved in human diseases, including cancer. Indeed, miRNA aberrant expression has been previously found in human chronic lymphocytic leukemias, where miRNA signatures were associated with specific clinicobiological features. Here, we show that, compared with normal breast tissue, miRNAs are also aberrantly expressed in human breast cancer. The overall miRNA expression could clearly separate normal versus cancer tissues, with the most significantly deregulated miRNAs being mir-125b, mir-145, mir-21, and mir-155. Results were confirmed by microarray and Northern blot analyses. We could identify miRNAs whose expression was correlated with specific breast cancer biopathologic features, such as estrogen and progesterone receptor expression, tumor stage, vascular invasion, or proliferation index. (Cancer Res 2005; 65(16): 7065-70)
Noncoding RNA (ncRNA) transcripts are thought to be involved in human tumorigenesis. We report that a large fraction of genomic ultraconserved regions (UCRs) encode a particular set of ncRNAs whose expression is altered in human cancers. Genome-wide profiling revealed that UCRs have distinct signatures in human leukemias and carcinomas. UCRs are frequently located at fragile sites and genomic regions involved in cancers. We identified certain UCRs whose expression may be regulated by microRNAs abnormally expressed in human chronic lymphocytic leukemia, and we proved that the inhibition of an overexpressed UCR induces apoptosis in colon cancer cells. Our findings argue that ncRNAs and interaction between noncoding genes are involved in tumorigenesis to a greater extent than previously thought.
Tiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.
The functional roles of SNPs within the 8q24 gene desert in the cancer phenotype are not yet well understood. Here, we report that CCAT2, a novel long noncoding RNA transcript (lncRNA) encompassing the rs6983267 SNP, is highly overexpressed in microsatellite-stable colorectal cancer and promotes tumor growth, metastasis, and chromosomal instability. We demonstrate that MYC, miR-17-5p, and miR-20a are up-regulated by CCAT2 through TCF7L2-mediated transcriptional regulation. We further identify the physical interaction between CCAT2 and TCF7L2 resulting in an enhancement of WNT signaling activity. We show that CCAT2 is itself a WNT downstream target, which suggests the existence of a feedback loop. Finally, we demonstrate that the SNP status affects CCAT2 expression and the risk allele G produces more CCAT2 transcript. Our results support a new mechanism of MYC and WNT regulation by the novel lncRNA CCAT2 in colorectal cancer pathogenesis, and provide an alternative explanation of the SNP-conferred cancer risk.[Supplemental material is available for this article.]Notwithstanding the considerable advancements in our understanding of the molecular genetic basis of cancer, in the majority of cancer-associated genomic regions, the responsible protein-coding genes have not been identified yet. The discovery of short (19-22 nt), noncoding RNAs (ncRNAs)-called microRNAs (miRNAs) (Ambros 2001)-not only revealed a novel mechanism of gene regulation but also led to the identification of miRNAs directly involved in cancer development (Spizzo et al. 2009). It is therefore plausible that as-yet-unidentified members of the broader category of ncRNA mapping to cancer-associated genomic regions play ratelimiting roles in tumor initiation and/or progression (Rinn and Chang 2012). For instance, we previously reported that highly conserved genomic regions (ultraconserved regions, or UCRs) (Bejerano et al. 2004) are frequently transcribed as long (>200 bp) ncRNAs (lncRNAs) in both normal and tumor tissues (Calin et al. 2007). Furthermore, germline mutations, as well as single nucleotide polymorphisms (SNPs) in ultraconserved ncRNAs, were found to occur more frequently in patients with colon cancer and chronic leukemia than in the general population (Wojcik et al. 2010).The rs6983267 SNP, mapping to the 8q24.21 chromosomal region, has been consistently associated with an increased risk of colorectal cancer (CRC) (Haiman et al. 2007): The G allele was associated with greater predisposition to CRC than the T allele (odds ratios of 1.27 and 1.47 for heterozygotes and homozygotes, respectively; P = 1.27 3 10 À14 ) (Tomlinson et al. 2007). The increased cancer risk from this SNP variant was also observed in other cancer types, including prostate, ovarian, and inflammatory breast cancer (Ghoussaini et al. 2008;Bertucci et al. 2012). Despite the consistent association between rs6983267 and cancer risk, the underlying molecular and cellular mechanisms remain largely unknown. The genomic region spanning rs6983267 was found to contain DNA (Pom...
Recently, microRNAs (miRNAs) have been discovered to have a role in metastasis. Here we describe how miRNAs are involved in advanced stages of tumour progression, stressing their roles as metastasis activators or suppressors, and discuss their possible use in the clinic as predictive markers and as therapeutic strategies for patients with metastases. Furthermore, we develop the concept that the same miRNAs could be involved both in the cancer stem cell phenotype and in the ability of specific cancer cells to produce metastases, thus representing a mechanistic link between the initial and the final steps of tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.