Tiling array and novel sequencing technologies have made available the transcription profile of the entire human genome. However, the extent of transcription and the function of genetic elements that occur outside of protein-coding genes, particularly those involved in disease, are still a matter of debate. In this review, we focus on long non-coding RNAs (lncRNAs) that are involved in cancer. We define lncRNAs and present a cancer-oriented list of lncRNAs, list some tools (for example, public databases) that classify lncRNAs or that scan genome spans of interest to find whether known lncRNAs reside there, and describe some of the functions of lncRNAs and the possible genetic mechanisms that underlie lncRNA expression changes in cancer, as well as current and potential future applications of lncRNA research in the treatment of cancer.
Emerging evidences suggest that cyclin-dependent kinase inhibitors (CKIs) can regulate cellular functions other than cell cycle progression, such as differentiation and migration. Here, we report that cytoplasmic expression of p27(kip1) affects microtubule (MT) stability following cell adhesion on extracellular matrix (ECM) constituents. This p27(kip1) activity is due to its ability to bind and impair the function of the MT-destabilizing protein stathmin. Accordingly, upregulation of p27(kip1) or downregulation of stathmin expression results in the inhibition of mesenchymal cell motility. Moreover, high stathmin and low cytoplasmic p27(kip1) expression correlate with the metastatic phenotype of human sarcomas in vivo. This study provides a functional link between proliferation and invasion of tumor cells based on diverse activities of p27(kip1) in different subcellular compartments.
Until recently, inflammatory chemokines were viewed mainly as indispensable “gate keepers” of immunity and inflammation. However, updated research indicates that cancer cells subvert the normal chemokine system and these molecules and their receptors become important constituents of the tumor microenvironment with very different ways to exert tumor-promoting roles. The CCR5 and the CCL5 ligand have been detected in some hematological malignancies, lymphomas, and a great number of solid tumors, but extensive studies on the role of the CCL5/CCR axis were performed only in a limited number of cancers. This review summarizes updated information on the role of CCL5 and its receptor CCR5 in cancer cell proliferation, metastasis, and the formation of an immunosuppressive microenvironment and highlights the development of newer therapeutic strategies aimed to inhibit the binding of CCL5 to CCR5, to inhibit CCL5 secretion, or to inhibit the interactions among tumor cells and the microenvironment leading to CCL5 secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.