Poly(2-alkyl/aryl-2-oxazoline)s (PAOx) are biocompatible pseudopolypeptides that have received significant interest for biomedical applications in recent years. The growing popularity of PAOx in recent years is driven by its much higher chemical versatility compared with the gold standard in this field, poly(ethylene glycol) (PEG), while having similar beneficial properties, such as stealth behavior and biocompatibility. We further expand the PAOx chemical toolbox by demonstrating a novel straightforward and highly versatile postpolymerization modification platform for the introduction of side-chain functionalities. PAOx having side chain methyl ester functionalities is demonstrated to undergo facile uncatalyzed amidation reactions with a wide range of amines, yielding the corresponding PAOx with side-chain secondary amide groups containing short aliphatic linkers as well as a range of side-chain functionalities including acid, amine, alcohol, hydrazide, and propargyl groups. The PAOx with side-chain methyl ester groups can be prepared by either partial hydrolysis of a PAOx followed by the introduction of the methyl ester via modification of the secondary amine groups with methyl succinyl chloride or by the direct copolymerization of a nonfunctional 2-oxazoline monomer with a 2-methoxycarbonylethyl-2-oxazoline. Thus, this novel synthetic platform enables direct access to a wide range of side-chain functionalities from the same methyl-esterfunctionalized poly(2-oxazoline) scaffold.
Random copolymers of n-propyl-2-oxazoline and ethylenimine (PPrOx-PEI) were prepared by partial acidic hydrolysis of poly(n-propyl-2-oxazoline) (PPrOx). Dynamic and electrophoretic light scattering and diffusion-ordered NMR spectroscopy were utilized to investigate aqueous solution properties of the copolymers. Above a specific cloud point temperature, well-defined nanoparticles were formed. The latter consisted of a core composed predominantly of PPrOx and a thin positively charged shell from PEI moieties that mediated formation of polyplexes with DNA. The polyplexes were prepared at 65 °C at varying N/P (amine-to-phosphate groups) ratios. They underwent structural changes upon temperature variations 65-25-37 °C depending on N/P. At N/P < 2, the polyplex particles underwent minor changes because of formation of a surface layer of DNA that acted as a barrier and prevented swelling and disintegration of the initial particles. Dramatic rearrangements at N/P ≥ 2 resulting in large swollen microgel particles were overcome by coating of the polyplex particles with a cross-linked polymeric shell. The shell retained the colloidal stability and preserved the physicochemical parameters of the initial polyplex particles while it reduced the high surface potential values. Progressive loss of cytotoxicity upon complexation with DNA and coating of polyplex particles was displayed.
This review discusses the full and partial hydrolysis of poly(2-oxazoline)s as well as the synthetic methods that have been reported to modify the resulting secondary amine groups.
The influence of different wet chemical treatments (HCl, H 2 SO 4 , NH 4 OH) on the composition of InP surfaces is studied by using synchrotron radiation photoemission spectroscopy (SRPES). It is shown that a significant amount of oxide remains present after immersion in a NH 4 OH solution which is ascribed to the insolubility of In 3+ at higher pH values. Acidic treatments efficiently remove the native oxide, although components like P 0 , In 0 and P (2± )+ suboxides are observed. Alternatively, the influence of a passivation step in (NH 4 ) 2 S solution on the surface composition was investigated. The InP surface after immersion into (NH 4 ) 2 S results in fewer surface components, without detection of P 0 and P (2± )+ suboxides. Finally, slight etching of InP surfaces in HCl/H 2 O 2 solution followed by a native oxide removal step, showed no significant effect on the surface composition.) unless CC License in place (see abstract). ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.255.6.125 Downloaded on 2015-06-08 to IP ) unless CC License in place (see abstract). ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.255.6.125 Downloaded on 2015-06-08 to IP ) unless CC License in place (see abstract). ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 128.255.6.125 Downloaded on 2015-06-08 to IP
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.