Abstract. Ice loss from the Antarctic ice sheet (AIS) is expected to become the major contributor to sea level in the next centuries. Projections of the AIS response to climate change based on numerical ice-sheet models remain challenging due to the complexity of physical processes involved in ice-sheet dynamics, including instability mechanisms that can destabilise marine basins with retrograde slopes. Moreover, uncertainties in ice-sheet models limit the ability to provide accurate sea-level rise projections. Here, we apply probabilistic methods to a hybrid ice-sheet model to investigate the influence of several sources of uncertainty, namely sources of uncertainty in atmospheric forcing, basal sliding, grounding-line flux parameterisation, calving, sub-shelf melting, ice-shelf rheology and bedrock relaxation, on the continental response of the Antarctic ice sheet to climate change over the next millennium. We provide probabilistic projections of sea-level rise and grounding-line retreat, and we carry out stochastic sensitivity analysis to determine the most influential sources of uncertainty. We find that all investigated sources of uncertainty, except bedrock relaxation time, contribute to the uncertainty in the projections. We show that the sensitivity of the projections to uncertainties increases and the contribution of the uncertainty in sub-shelf melting to the uncertainty in the projections becomes more and more dominant as atmospheric and oceanic temperatures rise, with a contribution to the uncertainty in sea-level rise projections that goes from 5 % to 25 % in RCP 2.6 to more than 90 % in RCP 8.5. We show that the significance of the AIS contribution to sea level is controlled by the marine ice-sheet instability (MISI) in marine basins, with the biggest contribution stemming from the more vulnerable West Antarctic ice sheet. We find that, irrespective of parametric uncertainty, the strongly mitigated RCP 2.6 scenario prevents the collapse of the West Antarctic ice sheet, that in both the RCP 4.5 and RCP 6.0 scenarios the occurrence of MISI in marine basins is more sensitive to parametric uncertainty, and that, almost irrespective of parametric uncertainty, RCP 8.5 triggers the collapse of the West Antarctic ice sheet.
International audienceThis article is concerned with the identification of probabilistic characterizations of random variables and fields from experimental data. The data used for the identification consist of measurements of several realizations of the uncertain quantities that must be characterized. The random variables and fields are approximated by a polynomial chaos expansion, and the coefficients of this expansion are viewed as unknown parameters to be identified. It is shown how the Bayesian paradigm can be applied to formulate and solve the inverse problem. The estimated polynomial chaos coefficients are hereby themselves characterized as random variables whose probability density function is the Bayesian posterior. This allows to quantify the impact of missing experimental information on the accuracy of the identified coefficients, as well as on subsequent predictions. An illustration in stochastic aeroelastic stability analysis is provided to demonstrate the proposed methodology
A numerical model is presented to predict vibrations in the free field from excitation due to metro trains in tunnels. The three-dimensional dynamic tunnel-soil interaction problem is solved with a subdomain formulation, using a finite element formulation for the tunnel and a boundary element method for the soil. The periodicity of the geometry in the longitudinal direction of the tunnel is exploited using the Floquet transform, limiting the discretization to a single-bounded reference cell. The responses of two different types of tunnel due to a harmonic load on the tunnel invert are compared, both in the frequency-wavenumber and spatial domains. The first tunnel is a shallow cut-and-cover masonry tunnel on the Paris metro network, embedded in layers of sand, while the second tunnel is a deep bored tunnel of London Underground, with a cast iron lining and embedded in the London clay.
Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower-dimensional space than the sources themselves. In this work, we thus propose to use a dimension reduction technique for obtaining the representation of the exchanged information, and we propose a measure transformation technique that allows subproblem implementations to exploit this dimension reduction to achieve computational gains. The effectiveness of the proposed dimension reduction and measure transformation methodology is demonstrated through a multiphysics problem relevant to nuclear engineering. 1045 which include Monte Carlo sampling techniques [3] and stochastic expansion methods. The latter typically involve the computation of a representation of the predictions as a polynomial chaos (PC) expansion. Several approaches, such as embedded projection [4,5], nonintrusive projection [5], and collocation [6][7][8][9][10], are available to calculate the coefficients in this expansion.A key challenge in the formulation and implementation of a coupled model is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. This information can comprise physical properties, energetic quantities, or solution patches, among other quantities. Although the number of sources of uncertainty can be expected to be large in most coupled problems, we believe that the exchanged information often resides in a considerably lower dimensional space than the sources themselves. Exchanged information can be expected to have a low effective stochastic dimension in multiphysics problems when this information consists of a solution field that has been smoothed by a forward operator and in multiscale problems when this information is obtained by summarizing fine-scale quantities into a coarse-scale representation.In a previous paper [11], we had proposed the use of a dimension reduction technique to represent the exchanged information: we proposed to represent the exchanged information by an adaptation of the Karhunen-Loève (KL) decomposition as this information passes from subproblem to subproblem and from iteration to iteration. The main objective of this paper is to complement this dimension reduction technique by a measure transformation technique that allow...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.