The cartilaginous intra-articular disc of the human temporomandibular joint shows clear anteroposterior variations in its morphology. However, anteroposterior variations in its tissue behavior have not been investigated thoroughly. To test the hypothesis that the mechanical properties of fresh human temporomandibular joint discs vary in anteroposterior direction, we performed dynamic indentation tests at three anteroposteriorly different locations. The disc showed strong viscoelastic behavior dependent on the amplitude and frequency of the indentation, the location, and time. The resistance against deformations and the shock absorbing capabilities were larger in the intermediate zone than in regions located more anteriorly and posteriorly. Because several studies have predicted that the intermediate zone is the predominantly loaded region of the disc, it can be concluded that the topological variations in its tissue behavior enable the disc to combine the functions of load distribution and shock absorption effectively.
While the movability of the human temporomandibular joint is great, the strains and stresses in the cartilaginous structures might largely depend on the position of the mandible with respect to the skull. This hypothesis was investigated by means of static three-dimensional finite element simulations involving different habitual condylar positions. Furthermore, the influence of several model parameters was examined by sensitivity analyses. The results indicated that the disc moved together with the condyle in the anterior direction without the presence of ligaments and the lateral pterygoid muscle. By adapting its shape to the changing geometry of the articular surfaces, the disc prevented small contact areas and thus local peak loading. In a jaw-closed configuration, the influence of 30 degrees variations of the loading direction was negligible. The load distribution capability of the disc appeared to be proportional to its elasticity and was enhanced by the fibrocartilage layers on the articular surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.