An important problem within both epidemiology and many social sciences is to break down the effect of a given treatment into different causal pathways and to quantify the importance of each pathway. Formal mediation analysis based on counterfactuals is a key tool when addressing this problem. During the last decade, the theoretical framework for mediation analysis has been greatly extended to enable the use of arbitrary statistical models for outcome and mediator. However, the researcher attempting to use these techniques in practice will often find implementation a daunting task, as it tends to require special statistical programming. In this paper, the authors introduce a simple procedure based on marginal structural models that directly parameterize the natural direct and indirect effects of interest. It tends to produce more parsimonious results than current techniques, greatly simplifies testing for the presence of a direct or an indirect effect, and has the advantage that it can be conducted in standard software. However, its simplicity comes at the price of relying on correct specification of models for the distribution of mediator (and exposure) and accepting some loss of precision compared with more complex methods. Web Appendixes 1 and 2, which are posted on the Journal's Web site (http://aje.oupjournals.org/), contain implementation examples in SAS software (SAS Institute, Inc., Cary, North Carolina) and R language (R Foundation for Statistical Computing, Vienna, Austria).
Among a group of European and Israeli ICU clinicians, perceptions of inappropriate care were frequently reported and were inversely associated with factors indicating good teamwork.
Our study on the attributable mortality of VAP is the first that simultaneously accounts for the time of acquiring VAP, informative loss to follow-up after ICU discharge, and the existence of complex feedback relations between VAP and the evolution of disease severity. In contrast to the majority of previous reports, we detected a relatively limited attributable ICU mortality of VAP.
Standard variable selection procedures, primarily developed for the construction of outcome prediction models, are routinely applied when assessing exposure effects in observational studies. We argue that this tradition is sub-optimal and prone to yield bias in exposure effect estimators as well as their corresponding uncertainty estimators. We weigh the pros and cons of confounder-selection procedures and propose a procedure directly targeting the quality of the exposure effect estimator. We further demonstrate that certain strategies for inferring causal effects have the desirable features (a) of producing (approximately) valid confidence intervals, even when the confounder-selection process is ignored, and (b) of being robust against certain forms of misspecification of the association of confounders with both exposure and outcome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.