Self-assembly provides an attractive route to functional organic materials, with properties and hence performance depending sensitively on the organization of the molecular building blocks. Molecular organization is a direct consequence of the pathways involved in the supramolecular assembly process, which is more amenable to detailed study when using one-dimensional systems. In the case of protein fibrils, formation and growth have been attributed to complex aggregation pathways that go beyond traditional concepts of homogeneous and secondary nucleation events. The self-assembly of synthetic supramolecular polymers has also been studied and even modulated, but our quantitative understanding of the processes involved remains limited. Here we report time-resolved observations of the formation of supramolecular polymers from π-conjugated oligomers. Our kinetic experiments show the presence of a kinetically favoured metastable assembly that forms quickly but then transforms into the thermodynamically favoured form. Quantitative insight into the kinetic experiments was obtained from kinetic model calculations, which revealed two parallel and competing pathways leading to assemblies with opposite helicity. These insights prompt us to use a chiral tartaric acid as an auxiliary to change the thermodynamic preference of the assembly process. We find that we can force aggregation completely down the kinetically favoured pathway so that, on removal of the auxiliary, we obtain only metastable assemblies.
To study the supramolecular polymerisation mechanisms of a self-assembling system, concentration- and temperature-dependent measurements can both be used to probe the transition from the molecular dissolved state to the aggregated state. In this report, both methods are evaluated to determine their effectiveness in identifying and quantifying the self-assembly mechanism for isodesmic and cooperative self-assembling systems. It was found that for a rapid and unambiguous determination of the self-assembly mechanism and its thermodynamic parameters, temperature-dependent measurements are more appropriate. These studies allow the acquisition of a large data set leading to an accurate determination of the self-assembly mechanism and quantification of the different thermodynamic parameters that describe the supramolecular polymerisation. For a comprehensive characterisation, additional concentration-dependent measurements can be performed.
On the basis of temperature-dependent UV-vis and circular dichroism (CD) spectroscopy measurements, we observed that C3-symmetrical discotic molecules, chiral (R)-1 and achiral 2, both self-assemble in a highly cooperative fashion. Chiral (R)-1 shows a higher degree of cooperativity, meaning it requires a larger nucleus before elongation sets in, as compared to achiral 2. Next to that, we investigated the mechanism of the "sergeants-and-soldiers" principle, where we found that the chiral sergeant (R)-1 strongly amplifies the preference in handedness of the mixed stacks of (R)-1 and 2. However, the elongation temperature and the degree of cooperativity are linearly dependent on both, at least in the regime above 4% of sergeant in the mixed system. Remarkably, we observed that at room temperature a fast exchange on the second time scale exists between molecules and stacks of sergeant (R)-1 and soldier 2, and that interconversion between M and P helices is fast at this temperature.
Over the last two decades the field of metallosupramolecular self-assembly has emerged as a promising research area for the development of intricate, three-dimensional structures of increasing complexity and functionality. The advent of this area of research has strongly benefited from design principles that considered the ligand geometry and metal coordination geometry, thus opening up routes towards rationally designed classical (Archimedean or Platonic) architectures. In this tutorial review, we will focus on more recent developments in the design and synthesis of three-dimensional suprastructures which have non-classical architectures (non-Archimedean/Platonic solids) and we will explicitly address the secondary effects responsible for their formation. Three classes of metallosupramolecular assemblies will be discussed: architectures formed through the combination of a single ligand and metal, heteroleptic structures and heterometallic structures. It is hoped that our exposition may suggest how different principles employed in these three classes of structures might be combined to create even greater complexity and potential for function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.