With the surging popularity of edge computing, the need to efficiently perform neural network inference on battery-constrained IoT devices has greatly increased. While algorithmic developments enable neural networks to solve increasingly more complex tasks, the deployment of these networks on edge devices can be problematic due to the stringent energy, latency, and memory requirements. One way to alleviate these requirements is by heavily quantizing the neural network, i.e. lowering the precision of the operands. By taking quantization to the extreme, e.g. by using binary values, new opportunities arise to increase the energy efficiency. Several hardware accelerators exploiting the opportunities of low-precision inference have been created, all aiming at enabling neural network inference at the edge. In this chapter, design choices and their implications on the flexibility and energy efficiency of several accelerators supporting extremely quantized networks are reviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.