Biological structures exert a major influence on species diversity at both local and regional scales on deep continental margins. Some organisms use other species as substrates for attachment, shelter, feeding or parasitism, but there may also be Mutual benefits from the association. Here, we highlight the structural attributes and biotic effects of the habitats that corals, sea pens, sponges and xenophyophores offer other organisms. The environmental setting of the biological structures influences their species composition. The importance of benthic species as substrates seems to increase with depth as the complexity of the surrounding geological substrate and food supply decline. There are marked differences in the degree of mutualistic relationships between habitat-forming taxa. This is especially evident for scleractinian corals, which have high numbers of facultative associates (commensals) and few obligate associates (mutualists), and gorgonians, with their few commensals and many obligate associates. Size, flexibility and architectural complexity of the habitat-forming organism are positively related to species diversity for both sessile and mobile species. This is mainly evident for commensal species sharing a facultative relationship with their host. Habitat complexity is enhanced by the architecture of biological structures, as well as by biological interactions. Colony morphology has a great influence on feeding efficiency for suspension feeders. Suspension feeding, habitat-forming organisms modify the environment to optimize their food uptake. This environmental advantage is also passed on to associated filter-feeding species. These effects are poorly understood but represent key points for understanding ecosystems and biodiversity on continental margins. In this paper we explore the contributions of organisms and the biotic structures they create (rather than physical modifications) to habitat heterogeneity and diversity on the deep continental margins
The great variety of geological and hydrological conditions in the deep sea generates many different habitats. Some are only recently explored, although their true extent and geographical coverage are still not fully established. Both continental margins and mid-oceanic seafloors are much more complex ecologically, geologically, chemically and hydrodynamically than originally thought. As a result, fundamental patterns of species distribution first observed and explained in the context of relatively monotonous slopes and abyssal plains must now be re-evaluated in the light of this newly recognized habitat heterogeneity. Based on a global database of nematode genus composition, collected as part of the Census of Marine Life, we show that macrohabitat heterogeneity contributes significantly to total deep-sea nematode diversity on a global scale. Different deep-sea settings harbour specific nematode assemblages. Some of them, like coral rubble zones or nodule areas, are very diverse habitats. Factors such as increased substrate complexity in the case of nodules and corals seem to facilitate the co-existence of a large number of genera with different modes of life, ranging from sediment dwelling to epifaunal. Furthermore, strong biochemical gradients in the case of vents or seeps are responsible for the success of particular genera, which are not prominent in more typical soft sediments. Many
Table of contentsP001 - Sepsis impairs the capillary response within hypoxic capillaries and decreases erythrocyte oxygen-dependent ATP effluxR. M. Bateman, M. D. Sharpe, J. E. Jagger, C. G. EllisP002 - Lower serum immunoglobulin G2 level does not predispose to severe flu.J. Solé-Violán, M. López-Rodríguez, E. Herrera-Ramos, J. Ruíz-Hernández, L. Borderías, J. Horcajada, N. González-Quevedo, O. Rajas, M. Briones, F. Rodríguez de Castro, C. Rodríguez GallegoP003 - Brain protective effects of intravenous immunoglobulin through inhibition of complement activation and apoptosis in a rat model of sepsisF. Esen, G. Orhun, P. Ergin Ozcan, E. Senturk, C. Ugur Yilmaz, N. Orhan, N. Arican, M. Kaya, M. Kucukerden, M. Giris, U. Akcan, S. Bilgic Gazioglu, E. TuzunP004 - Adenosine a1 receptor dysfunction is associated with leukopenia: A possible mechanism for sepsis-induced leukopeniaR. Riff, O. Naamani, A. DouvdevaniP005 - Analysis of neutrophil by hyper spectral imaging - A preliminary reportR. Takegawa, H. Yoshida, T. Hirose, N. Yamamoto, H. Hagiya, M. Ojima, Y. Akeda, O. Tasaki, K. Tomono, T. ShimazuP006 - Chemiluminescent intensity assessed by eaa predicts the incidence of postoperative infectious complications following gastrointestinal surgeryS. Ono, T. Kubo, S. Suda, T. Ueno, T. IkedaP007 - Serial change of c1 inhibitor in patients with sepsis – A prospective observational studyT. Hirose, H. Ogura, H. Takahashi, M. Ojima, J. Kang, Y. Nakamura, T. Kojima, T. ShimazuP008 - Comparison of bacteremia and sepsis on sepsis related biomarkersT. Ikeda, S. Suda, Y. Izutani, T. Ueno, S. OnoP009 - The changes of procalcitonin levels in critical patients with abdominal septic shock during blood purificationT. Taniguchi, M. OP010 - Validation of a new sensitive point of care device for rapid measurement of procalcitoninC. Dinter, J. Lotz, B. Eilers, C. Wissmann, R. LottP011 - Infection biomarkers in primary care patients with acute respiratory tract infections – Comparison of procalcitonin and C-reactive proteinM. M. Meili, P. S. SchuetzP012 - Do we need a lower procalcitonin cut off?H. Hawa, M. Sharshir, M. Aburageila, N. SalahuddinP013 - The predictive role of C-reactive protein and procalcitonin biomarkers in central nervous system infections with extensively drug resistant bacteriaV. Chantziara, S. Georgiou, A. Tsimogianni, P. Alexandropoulos, A. Vassi, F. Lagiou, M. Valta, G. Micha, E. Chinou, G. MichaloudisP014 - Changes in endotoxin activity assay and procalcitonin levels after direct hemoperfusion with polymyxin-b immobilized fiberA. Kodaira, T. Ikeda, S. Ono, T. Ueno, S. Suda, Y. Izutani, H. ImaizumiP015 - Diagnostic usefullness of combination biomarkers on ICU admissionM. V. De la Torre-Prados, A. Garcia-De la Torre, A. Enguix-Armada, A. Puerto-Morlan, V. Perez-Valero, A. Garcia-AlcantaraP016 - Platelet function analysis utilising the PFA-100 does not predict infection, bacteraemia, sepsis or outcome in critically ill patientsN. Bolton, J. Dudziak, S. Bonney, A. Tridente, P. NeeP017 - Extracellular histone H3 levels are in...
Owing to large-scale ice-shelf disintegration events, the Antarctic Larsen A and B areas recently became ice-free. During the ANT-XXIII/8 Polarstern campaign, this region was sampled for the first time. Our study is the first to investigate benthic communities in this area and their response to the collapse of ice shelves in the Antarctic. The nematofauna appears to be strongly influenced by the sudden ice-cover removal, although its response differs from that of the macro- and megabenthos. Our results indicate that precollapse, sub-ice communities were impoverished and characterized by low densities, low diversity and high dominance of a few taxa. This might still be visible at a station located deep inside the Larsen B embayment, where Halomonhystera was dominant. Post-collapse recolonization of the 'inner' stations, i.e. those located furthermost from the former ice-shelf edge, is believed to be a long-time process. At the time of sampling, community structure at the inner stations was not or only slightly influenced by colonization, and might be structured by local environmental conditions. Our results indicate that a locally increased food supply after ice-cover removal could provoke a faster, local response of the nematode assemblages compared with the response due to recolonization. Thalassomonhystera is recognized as an opportunist, taking advantage of increased food supply at inner stations A_South and B_North. Communities living close to the former ice-shelf edge are believed to be at an intermediate or late stage of succession, with a dominance of Microlaimus, a common Antarctic genus and quick colonizer. Densities here were comparable with those at other Antarctic stations, whereas they were considerably decreased at the inner stations. In general, the collapse of the Larsen ice shelves initially has a positive effect on the shelf nematode fauna in the area, both in terms of abundance and diversity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.