Single view depth estimation models can be trained from video footage using a self-supervised end-to-end approach with view synthesis as the supervisory signal. This is achieved with a framework that predicts depth and camera motion, with a loss based on reconstructing a target video frame from temporally adjacent frames. In this context, occlusion relates to parts of a scene that can be observed in the target frame but not in a frame used for image reconstruction. Since the image reconstruction is based on sampling from the adjacent frame, and occluded areas by definition cannot be sampled, reconstructed occluded areas corrupt to the supervisory signal. In previous work [6] occlusion is handled based on reconstruction error; at each pixel location, only the reconstruction with the lowest error is included in the loss. The current study aims to determine whether performance improvements of depth estimation models can be gained by during training only ignoring those regions that are affected by occlusion.In this work we introduce occlusion mask, a mask that during training can be used to specifically ignore regions that cannot be reconstructed due to occlusions. Occlusion mask is based entirely on predicted depth information. We introduce two novel loss formulations which incorporate the occlusion mask. The method and implementation of [6] serves as the foundation for our modifications as well as the baseline in our experiments. We demonstrate that (i) incorporating occlusion mask in the loss function improves the performance of single image depth prediction models on the KITTI benchmark. (ii) loss functions that select from reconstructions based on error are able to ignore some of the reprojection error caused by object motion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.