The mineralized collagen fibril is the basic building block of bone, and is commonly pictured as a parallel array of ultrathin carbonated hydroxyapatite (HAp) platelets distributed throughout the collagen. This orientation is often attributed to an epitaxial relationship between the HAp and collagen molecules inside 2D voids within the fibril. Although recent studies have questioned this model, the structural relationship between the collagen matrix and HAp, and the mechanisms by which collagen directs mineralization remain unclear. Here, we use XRD to reveal that the voids in the collagen are in fact cylindrical pores with diameters of ~2 nm, while electron microscopy shows that the HAp crystals in bone are only uniaxially oriented with respect to the collagen. From in vitro mineralization studies with HAp, CaCO3 and γ-FeOOH we conclude that confinement within these pores, together with the anisotropic growth of HAp, dictates the orientation of HAp crystals within the collagen fibril.
Organic bulk-heterojunctions (BHJ) and solar cells containing the trimetallic nitride endohedral fullerene 1-[3-(2-ethyl)hexoxy carbonyl]propyl-1-phenyl-Lu(3)N@C(80) (Lu(3)N@C(80)-PCBEH) show an open circuit voltage (V(OC)) 0.3 V higher than similar devices with [6,6]-phenyl-C[61]-butyric acid methyl ester (PC(61)BM). To fully exploit the potential of this acceptor molecule with respect to the power conversion efficiency (PCE) of solar cells, the short circuit current (J(SC)) should be improved to become competitive with the state of the art solar cells. Here, we address factors influencing the J(SC) in blends containing the high voltage absorber Lu(3)N@C(80)-PCBEH in view of both photogeneration but also transport and extraction of charge carriers. We apply optical, charge carrier extraction, morphology, and spin-sensitive techniques. In blends containing Lu(3)N@C(80)-PCBEH, we found 2 times weaker photoluminescence quenching, remainders of interchain excitons, and, most remarkably, triplet excitons formed on the polymer chain, which were absent in the reference P3HT:PC(61)BM blends. We show that electron back transfer to the triplet state along with the lower exciton dissociation yield due to intramolecular charge transfer in Lu(3)N@C(80)-PCBEH are responsible for the reduced photocurrent.
Complex polymeric nanospheres were formed in water from comb-like amphiphilic block copolymers. Their internal morphology was determined by three-dimensional cryo-electron tomographic analysis. Varying the polymer molecular weight (MW) and the hydrophilic block weight content allowed for fine control over the internal structure. Construction of a partial phase diagram allowed us to determine the criteria for the formation of bicontinuous polymer nanosphere (BPN), namely for copolymers with MW of up to 17 kDa and hydrophilic weight fractions of ≤0.25; and varying the organic solvent to water ratio used in their preparation allowed for control over nanosphere diameters from 70 to 460 nm. Significantly, altering the block copolymer hydrophilic–hydrophobic balance enabled control of the internal pore diameter of the BPNs from 10 to 19 nm.
Bicontinuous nanospheres have been observed (although rarely) from a variety of block copolymers with architectural and compositional complexity, and often in the presence of additives. Unlocking key features involved in their formation presents possibilities for bicontinuous aggregates with varied functionality and application. An attractive prospect is the ability to form them from much simpler polymeric structures derived from facile syntheses. To that end, we herein report the formation of bicontinuous aggregates from simple amorphous amphiphilic diblock copolymers of poly(ethylene oxide)-b-poly(n-butyl methacrylate), analogous to our previous report of the same from a semicrystalline comb-like block copolymer. Moreover, we demonstrate that polymorphism can be achieved by altering the relative block proportions and the nonselective cosolvent. We find that the polymeric structure is not the dominating factor in the formation of bicontinuous nanospheres but that the choice of cosolvent for the hydrophilic block appears to have greater influence on determining the end morphology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.