There is abundant evidence that tumor-infiltrating CD8 T cells contribute positively to antitumor immunity; however, the role of tumor-infiltrating B cells (TIL-B) and plasma cells (PC) remains controversial, leading to differing opinions about whether immunotherapies should be designed to enhance or inhibit these cells. Through a comprehensive PubMed search, we reviewed publications with cohorts of 50 or more cases in which the prognostic value of TIL-B/PC was assessed by immunohistochemistry and/or gene-expression analysis. Sixty-nine studies representing 19 cancers met our review criteria. The large majority of studies assessed TIL-B by immunohistochemical detection of CD20. Of these, 50.0% reported a positive prognostic effect for CD20 TIL-B, whereas the remainder found a neutral (40.7%) or negative (9.3%) effect. These differences in prognostic effect were not attributable to cancer type, other clinicopathologic factors, or differing technical approaches. The prognostic significance of TIL-B/PC was generally concordant with that of CD3 and/or CD8 T cells, and the prognostic effect of T cells was generally stronger when TIL-B and/or PC were also present. Additionally, 21 studies inferred the presence of TIL-B/PC from gene-expression data, and a large majority reported a positive prognostic effect. Although more studies are required involving additional cancer types and independent patient cohorts, the weight of evidence supports a positive role for TIL-B and PC in antitumor immunity, suggesting that enhancement of these responses should be considered in the design of cancer immunotherapies.
A transcriptionally distinct CXCL13+CD103+CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer de Bruyn, M. (2019). A transcriptionally distinct CXCL13+CD103+CD8+ T-cell population is associated with B-cell recruitment and neoantigen load in human cancer. Cancer immunology research, 7(5), 784-796.
AbstractThe chemokine CXCL13 mediates recruitment of B cells to tumors and is essential for the formation of tertiary lymphoid structures (TLSs). TLSs are thought to support antitumor immunity and are associated with improved prognosis. However, it remains unknown whether TLSs are formed in response to the general inflammatory character of the tumor microenvironment, or rather, are induced by (neo)antigen-specific adaptive immunity. We here report on the finding that the transforming growth factor beta (TGFβ)-dependent CD103 + CD8 + tumor-infiltrating T-cell (TIL) subpopulation expressed and produced CXCL13. Accordingly, CD8 + T cells from peripheral blood activated in the presence of TGFβ upregulated CD103 and secreted CXCL13. Conversely, inhibition of TGFβ receptor signaling abrogated CXCL13 production. CXCL13 + CD103 + CD8 + TILs correlated with B-cell recruitment, TLSs, and neoantigen burden in six cohorts of human tumors. Altogether, our findings indicated that TGFβ plays a non-canonical role in coordinating immune responses against human tumors and suggest a potential role for CXCL13 + CD103 + CD8 + TILs in mediating B-cell recruitment and TLS formation in human tumors.
IntroductionMicroRNAs (miRNAs) are a group of small noncoding RNAs involved in the regulation of gene expression. As such, they regulate a large number of cellular pathways, and deregulation or altered expression of miRNAs is associated with tumorigenesis. In the current study, we evaluated the feasibility and clinical utility of circulating miRNAs as biomarkers for the detection and staging of breast cancer.MethodsmiRNAs were extracted from a set of 84 tissue samples from patients with breast cancer and eight normal tissue samples obtained after breast-reductive surgery. After reverse transcription and preamplification, 768 miRNAs were profiled by using the TaqMan low-density arrays. After data normalization, unsupervised hierarchical cluster analysis (UHCA) was used to investigate global differences in miRNA expression between cancerous and normal samples. With fold-change analysis, the most discriminating miRNAs between both tissue types were selected, and their expression was analyzed on serum samples from 20 healthy volunteers and 75 patients with breast cancer, including 16 patients with untreated metastatic breast cancer. miRNAs were extracted from 200 μl of serum, reverse transcribed, and analyzed in duplicate by using polymerase chain reaction (qRT-PCR).ResultsUHCA showed major differences in miRNA expression between tissue samples from patients with breast cancer and tissue samples from breast-reductive surgery (P < 0.0001). Generally, miRNA expression in cancerous samples tends to be repressed when compared with miRNA expression in healthy controls (P = 0.0685). The four most discriminating miRNAs by fold-change (miR-215, miR-299-5p, miR-411, and miR-452) were selected for further analysis on serum samples. All miRNAs at least tended to be differentially expressed between serum samples from patients with cancer and serum samples from healthy controls (miR-215, P = 0.094; miR-299-5P, P = 0.019; miR-411, P = 0.002; and miR-452, P = 0.092). For all these miRNAs, except for miR-452, the greatest difference in expression was observed between serum samples from healthy volunteers and serum samples from untreated patients with metastatic breast cancer.ConclusionsOur study provides a basis for the establishment of miRNAs as biomarkers for the detection and eventually staging of breast cancer through blood-borne testing. We identified and tested a set of putative biomarkers of breast cancer and demonstrated that altered levels of these miRNAs in serum from patients with breast cancer are particularly associated with the presence of metastatic disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.