PurposeRadiolabelled peptides used for peptide receptor radionuclide therapy are excreted mainly via the kidneys and are partly reabsorbed and retained in the proximal tubular cells. The resulting high renal radiation dose can cause nephrotoxicity, limiting the maximum activity dose and the effectiveness of peptide receptor radionuclide therapy. The mechanisms of kidney reabsorption of these peptides are incompletely understood, but the scavenger receptor megalin has been shown to play a role in the reabsorption of 111In-octreotide. In this study, the role of megalin in the renal reabsorption of various relevant radiolabelled peptides was investigated.MethodsGroups of kidney-specific megalin-deficient mice and wild-type mice were injected with 111In-labelled somatostatin, exendin, neurotensin or minigastrin analogues. Single photon emission computed tomographic (SPECT) images of the kidneys were acquired and analysed quantitatively, or the animals were killed 3 h after injection and the activity concentration in the kidneys was measured.ResultsMegalin-deficient mice showed significantly lower uptake of all studied radiolabelled peptides in the kidneys, ranging from 22% (111In-octreotide) to 65% (111In-exendin) of uptake in wild-type kidneys. Quantitative analysis of renal uptake by SPECT and ex vivo measurements showed a very good correlation.ConclusionMegalin is involved in the renal reabsorption of radiolabelled octreotide, octreotate, exendin, neurotensin and minigastrin. This knowledge may help in the design of strategies to reduce this reabsorption and the resulting nephrotoxicity in peptide receptor radionuclide therapy, enabling more effective therapy. Small-animal SPECT is an accurate tool, allowing in vivo quantification of renal uptake and serial measurements in individual mice.
Bombesin is a tetradecapeptide neurohormone that binds to gastrin-releasing peptide receptors (GRPR). GRPRs have been found in a variety of cancers including invasive breast and prostate tumors. The peptide MP2346 (DOTA-(Pro(1),Tyr(4))-bombesin(1-14)) was designed to bind to these GRP receptors. This study was undertaken to evaluate radiolabeled MP2346 as a positron emission tomography (PET) imaging agent. MP2346 was radiolabeled, in high radiochemical purity, with the positron-emitting nuclides (64)Cu (t(1/2) = 12.7 h, beta+ = 19.3%, E(avg) = 278 keV) and (86)Y (t(1/2) = 14.7 h, beta+ = 33%, E(avg) = 664 keV). (64)Cu-MP2346 and (86)Y-MP2346 were studied in vitro for cellular internalization by GRPR-expressing PC-3 (human prostate adenocarcinoma) cells. Both (64)Cu- and (86)Y-MP2346 were studied in vivo for tissue distribution in nude mice with PC-3 tumors. Biodistribution in PC3 tumor-bearing mice demonstrated higher tumor uptake, but lower liver retention, in animals injected with (86)Y-MP2346 compared to (64)Cu-MP2346. Receptor-mediated uptake was confirmed by a significant reduction in uptake in the PC-3 tumor and other receptor-rich tissues by coinjection of a blockade. Small animal PET/CT imaging was carried out in mice bearing PC-3 tumors and rats bearing AR42J tumors. It was possible to delineate PC-3 tumors in vivo with (64)Cu-MP2346, but superior (86)Y-MP2346-PET images were obtained due to lower uptake in clearance organs and lower background activity. The (86)Y analogue demonstrated excellent PET image quality in models of prostate cancer for the delineation of the GRPR-rich tumors and warrants further investigation.
Neurotensin (NT) receptors are overexpressed in exocrine pancreatic cancer and Ewing's sarcoma. The potential utility of native NT in cancer diagnosis and therapy is, however, limited by its rapid degradation in vivo. Therefore, NT analogues were synthesised with modified lysine and arginine derivatives to enhance stability and coupled either to DTPA, to enable high specific activity labelling with indium-111 for imaging, or to DOTA, to enable high specific activity labelling with beta-emitting radionuclides, such as lutetium-177 and yttrium-90. Based on serum stability (4 h incubation at 37 degrees C in human serum) and receptor binding affinity, the five most promising analogues were selected and further evaluated in in vitro internalisation studies in human colorectal adenocarcinoma HT29 cells, which overexpress NT receptors. All five NT analogues bound with high affinity to NT receptors on human exocrine pancreatic tumour sections. The analogues could be labelled with (111)In to a high specific activity. The (111)In-labelled compounds were found to be very stable in serum. Incubation of HT29 cells with the (111)In-labelled analogues at 37 degrees C showed rapid receptor-mediated uptake and internalisation. The most promising analogue, peptide 2530 [DTPA-(Pip)Gly-Pro-(PipAm)Gly-Arg-Pro-Tyr-tBuGly-Leu-OH] was further tested in vivo in a biodistribution study using HT29 tumour-bearing nude mice. The results of this study showed low percentages of injected dose per gram tissue of this (111)In-labelled 2530 analogue in receptor-negative organs like blood, spleen, pancreas, liver, muscle and femur. Good uptake was found in the receptor-positive HT29 tumour and high uptake was present in the kidneys. Co-injection of excess unlabelled NT significantly reduced tumour uptake, showing that tumour uptake is a receptor-mediated process. With their enhanced stability, maintained high receptor affinity and rapid receptor-mediated internalisation, the (111)In-labelled DTPA- and DOTA-conjugated NT analogues are excellent candidates for imaging and therapy of exocrine pancreatic cancer, peptide 2530 being the most promising analogue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.