Stratospheric water vapour (SWV), as a greenhouse gas, modulates the radiative energy budget of the climate system. It is sensitive to, and plays a significant role in the climate change. In this study, we investigate the SWV response to CO2 increase with the Whole Atmosphere Community Climate Model (WACCM). In addition, we study its possible feedback on stratospheric temperature and relevant mechanisms. In our model experiments, the CO2 concentration and sea surface temperature (SSTs) are changed at the same time, as well as separately, to enable separating the radiative-photochemical and dynamical response to CO2 doubling scenarios. The model results show that the response of SWV to CO2 doubling is dominated by the changes in the SSTs, with an increase of the SWV concentration by ~ 6 to 10% in most of the stratosphere and more than 10% in the lower stratosphere, except for winter pole in the lower stratosphere, where the CO2 doubling decreases water vapour. The increase of SWV is mostly due to a dynamical response to the warm SSTs. Doubled CO2 induces warm SSTs globally and further leads to moist troposphere and a warmer tropical and subtropical tropopause, resulting in more water vapour entering stratosphere from below. As a greenhouse gas, large increase of SWV in the lower stratosphere, in turn, affects the stratospheric temperature, resulting in a warming of the tropical and subtropical lower stratosphere, offsetting the cooling caused by CO2 doubling.
During high solar activity, the atmosphere receives more energy from the sun, particularly in the form of shortwave radiation. Most notable is the effect in the middle and upper atmosphere, which in general shows a positive temperature response due to physical and chemical processes that are intensified at high solar activity. It is thus surprising that a clear solar cycle signal is absent in the summer polar mesosphere region in spite of it being illuminated around the clock. In this study, it is investigated how the circulation in the summer mesosphere is affected by changes in the solar flux using a 30-yr run from the nudged version of the Canadian Middle Atmosphere Model (CMAM30). It is found that—in July—the solar cycle signal from direct solar heating is counteracted by an enhanced residual circulation, which adiabatically cools the region at a higher rate when the solar activity is above average. The dynamical cooling is partly initiated in the Southern Hemisphere winter stratosphere.
Abstract. Over recent decades it has become clear that the middle atmosphere has a significant impact on surface and tropospheric climate. A better understanding of the middle atmosphere and how it reacts to the current increase in the concentration of carbon dioxide (CO2) is therefore necessary. In this study, we investigate the response of the middle atmosphere to a doubling of the CO2 concentration, and the associated changes in sea surface temperatures (SSTs), using the Whole Atmosphere Community Climate Model (WACCM). We use the climate feedback response analysis method (CFRAM) to calculate the partial temperature changes due to an external forcing and climate feedbacks in the atmosphere. As this method has the unique feature of additivity, these partial temperature changes are linearly addable. In this study, we discuss the direct forcing of CO2 and the effects of the ozone, water vapour, cloud, albedo and dynamical feedbacks. As expected, our results show that the direct forcing of CO2 cools the middle atmosphere. This cooling becomes stronger with increasing height; the cooling in the upper stratosphere is about three times as strong as the cooling in the lower stratosphere. The ozone feedback yields a radiative feedback that mitigates this cooling in most regions of the middle atmosphere. However, in the tropical lower stratosphere, and in some regions of the mesosphere, the ozone feedback has a cooling effect. The increase in the CO2 concentration causes the dynamics to change. The temperature response due to this dynamical feedback is small in terms of the global average, although there are large temperature changes due to this feedback locally. The temperature change in the lower stratosphere is influenced by the water vapour feedback and, to a lesser degree, by the cloud and albedo feedback. These feedbacks play no role in the upper stratosphere and the mesosphere. We find that the effects of the changed SSTs on the middle atmosphere are relatively small compared to the effects of changing the CO2. However, the changes in SSTs are responsible for dynamical feedbacks that cause large temperature changes. Moreover, the temperature response to the water vapour feedback in the lower stratosphere is almost solely due to changes in the SSTs. As CFRAM has not been applied to the middle atmosphere in this way before, this study also serves to investigate the applicability and the limitations of this method. This work shows that CFRAM is a very powerful tool for studying climate feedbacks in the middle atmosphere. However, it should be noted that there is a relatively large error term associated with the current method in the middle atmosphere, which can, to a large extent, be explained by the linearization in the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.