microRNAs (miRNAs) are a unique class of short endogenous RNAs that became known in the last few decades as major players in gene regulation at the post-transcriptional level. Their regulatory roles make miRNAs crucial for normal development and physiology in several distinct groups of eukaryotes including plants and animals. The common notion in the field is that miRNAs have evolved independently in those distinct lineages, but recent evidence from non-bilaterian metazoans, plants, as well as various algae raise the possibility that already the last common ancestor of these lineages might have employed a miRNA pathway for post-transcriptional regulation. In this review we present the commonalities and differences of the miRNA pathways in various eukaryotes and discuss the contrasting scenarios of their possible evolutionary origin and their proposed link to organismal complexity and multicellularity.
Small non-coding RNAs (sRNAs) such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) regulate the levels of endogenous, viral and transposable element RNA in plants (excluding piRNAs) and animals. These pathways are explored mainly in bilaterian animals, such as vertebrates, arthropods and nematodes, where siRNAs and piRNAs, but not miRNAs bind their targets with a perfect match and mediate the cleavage of the target RNA. Methylation of the 3′ ends of piRNAs and siRNAs by the methyltransferase HEN1 protects these sRNAs from degradation. There is a noticeable selection in bilaterian animals against miRNA-mRNA perfect matching, as it leads to the degradation of miRNAs. Cnidarians (sea anemones, corals, hydroids and jellyfish), are separated from bilaterians by more than 600 million years. As opposed to bilaterians, cnidarian miRNAs frequently bind their targets with a nearly perfect match. Knowing that an ortholog of HEN1 is widely expressed in the sea anemone Nematostella vectensis, we tested in this work whether it mediates the stabilization of its sRNAs. We show that the knockdown of HEN1 in Nematostella results in a developmental arrest. Small RNA sequencing revealed that the levels of both miRNAs and piRNAs drop dramatically in the morphant animals. Moreover, knockdown experiments of Nematostella Dicer1 and PIWI2, homologs of major bilaterian biogenesis components of miRNAs and piRNAs, respectively, resulted in developmental arrest similar to HEN1 morphants. Our findings suggest that HEN1 mediated methylation of sRNAs reflects the ancestral state, where miRNAs were also methylated. Thus, we provide the first evidence of a methylation mechanism that stabilizes miRNAs in animals, and highlight the importance of post-transcriptional regulation in non-bilaterian animals.
Background/Aims: AP-1 transcription factor plays a conserved role in the immediate response to stress. Activation of AP-1 members jun and fos is mediated by complex signaling cascades to control cell proliferation and survival. To understand the evolution of this broadly-shared pathway, we studied AP-1 regulation by MAPK signaling in a basal metazoan. Methods: Metal- stressed cnidarian Nematostella vectensis anemones were tested with kinase inhibitors and analyzed for gene expression levels and protein phosphorylation. Results: We show that in cnidarian, AP-1 is regulated differently than in bilaterian models. ERK2 and ERK5, the main MAPK drivers of AP-1 activation in Bilateria, down-regulated fos1 and jun1 transcription in anemones exposed to metal stress, whereas p38 MAPK, triggered transcription of jun1 but not fos1. Furthermore, our results reveal that GSK3-β is the main driver of the immediate stress response in Nematostella. GSK3-β triggered transcription of AP-1 and two other stress-related genes, egr1 and hsp70. Finally, phylogenetic analysis and protein characterization show that while MAPKs and GSK3-β are evolutionarily conserved, Fos and Jun proteins in Nematostella and other cnidarians lack important regulatory and phosphorylation sites found in Bilateria. Conclusion: These findings reveal alternative network interactions of conserved signaling kinases, providing insight into the evolutionary plasticity of immediate stress response mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.