Land plants are considered monophyletic, descending from a single successful colonization of land by an aquatic algal ancestor. The ability to survive dehydration to the point of desiccation is a key adaptive trait enabling terrestrialization. In extant land plants, desiccation tolerance depends on the action of the hormone abscisic acid (ABA) that acts through a receptor-signal transduction pathway comprising a PYRABACTIN RESISTANCE 1-like (PYL)–PROTEIN PHOSPHATASE 2C (PP2C)–SNF1-RELATED PROTEIN KINASE 2 (SnRK2) module. Early-diverging aeroterrestrial algae mount a dehydration response that is similar to that of land plants, but that does not depend on ABA: Although ABA synthesis is widespread among algal species, ABA-dependent responses are not detected, and algae lack an ABA-binding PYL homolog. This raises the key question of how ABA signaling arose in the earliest land plants. Here, we systematically characterized ABA receptor-like proteins from major land plant lineages, including a protein found in the algal sister lineage of land plants. We found that the algal PYL-homolog encoded by Zygnema circumcarinatum has basal, ligand-independent activity of PP2C repression, suggesting this to be an ancestral function. Similarly, a liverwort receptor possesses basal activity, but it is further activated by ABA. We propose that co-option of ABA to control a preexisting PP2C-SnRK2-dependent desiccation-tolerance pathway enabled transition from an all-or-nothing survival strategy to a hormone-modulated, competitive strategy by enabling continued growth of anatomically diversifying vascular plants in dehydrative conditions, enabling them to exploit their new environment more efficiently.
Conformational transitions and structural rearrangements are central to the function of many RNAs yet remain poorly understood. We have used ultrafast multidimensional NMR techniques to monitor the adenine-induced folding of an adenine-sensing riboswitch in real time, with nucleotide-resolved resolution. By following changes in 2D spectra at rates of approximately 0.5 Hz, we identify distinct steps associated with the ligand-induced folding of the riboswitch. Following recognition of the ligand, long range looploop interactions form and are then progressively stabilized before the formation of a fully stable complex over approximately 2-3 minutes. The application of these ultrafast multidimensional NMR methods provides the opportunity to determine the structure of RNA folding intermediates and conformational trajectories.dynamics | riboswitches | ultrafast NMR | conformational transition R iboswitches are genetic control elements found in untranslated regions of prokaryotic and, less often, eukaryotic mRNAs (1). Their function in gene regulation depends on their ability to change structure in response to ligand binding, a property shared with many other functional RNAs (2, 3). They are composed of a ligand-binding domain that is very well conserved to specifically recognize the target metabolite and an expression platform whose structure is altered when the ligand-binding domain is occupied. The change in structure in the expression platform modulates transcription termination or translation initiation in response to changes in metabolite concentration (4, 5). While the structural basis for ligand recognition is known for many riboswitches, how the associated conformational changes occur is much less well understood. Yet the function of the riboswitches depends on their ability to change structure in response to ligand binding, and indeed the kinetics of ligand binding can affect gene regulation (6-8).Purine-sensing riboswitches have been studied with particular intensity because they represent ideal model systems to understand ligand recognition and riboswitch function. The structure of the adenine-sensing riboswitch aptamer domain bound to adenine has been determined by X-ray crystallography (9, 10) and studied extensively by NMR as well (11-13). These studies have shown how a single nucleotide can switch the specificity from adenine to guanine and revealed the architecture of the riboswitch. The structure is composed of three helices emanating from the junction; two hairpin loops capping helices 2 and 3 form a tuning fork-like architecture in the presence of the ligand (Fig. 1), while the three-way junction is responsible for direct adenine recognition. The structure of free adenine-sensing riboswitch aptamer is much more flexible, preventing so far a detailed structural characterization.Single molecule techniques have been applied to studying the time-dependent folding of the purine riboswitch while actively transcribed on the RNA polymerase (14, 15). These force spectroscopy studies have revealed multiple f...
An approach enabling the acquisition of 2D nuclear magnetic resonance (NMR) spectra within a single scan has been recently proposed. A promising application opened up by this "ultrafast" data acquisition format concerns the monitoring of chemical transformations as they happen, in real time. The present paper illustrates some of this potential with two examples: (i) following an H/D exchange process that occurs upon dissolving a protonated protein in D2O, and (ii) real-time in situ tracking of a transient Meisenheimer complex that forms upon rapidly mixing two organic reactants inside the NMR observation tube. The first of these measurements involved acquiring a train of 2D 1H-15N HSQC NMR spectra separated by ca. 4 s; following an initial dead time, this allowed us to monitor the kinetics of hydrogen exchange in ubiquitin at a site-resolved level. The second approach enabled us to observe, within ca. 2 s after the triggering of the reaction, a competition between thermodynamic and kinetic controls via changes in a series of 2D TOCSY patterns. The real-time dynamic experiments hereby introduced thus add to an increasing family of fast characterization techniques based on 2D NMR; their potential and limitations are briefly discussed.
Following unidirectional biophysical events such as the folding of proteins or the equilibration of binding interactions, requires experimental methods that yield information at both atomic-level resolution and at high repetition rates. Toward this end a number of different approaches enabling the rapid acquisition of 2D NMR spectra have been recently introduced, including spatially encoded "ultrafast" 2D NMR spectroscopy and SOFAST HMQC NMR. Whereas the former accelerates acquisitions by reducing the number of scans that are necessary for completing arbitrary 2D NMR experiments, the latter operates by reducing the delay between consecutive scans while preserving sensitivity. Given the complementarities between these two approaches it seems natural to combine them into a single tool, enabling the acquisition of full 2D protein NMR spectra at high repetition rates. We demonstrate here this capability with the introduction of "ultraSOFAST" HMQC NMR, a spatially encoded and relaxation-optimized approach that can provide 2D protein correlation spectra at approximately 1 s repetition rates for samples in the approximately 2 mM concentration range. The principles, relative advantages, and current limitations of this new approach are discussed, and its application is exemplified with a study of the fast hydrogen-deuterium exchange characterizing amide sites in Ubiquitin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.