The unscented Kalman filter (UKF) is widely used to address the nonlinear problems in target tracking. However, this standard UKF shows unstable performance whenever the noise covariance mismatches. Furthermore, in consideration of the deficiencies of the current adaptive UKF algorithm, this paper proposes a new adaptive UKF scheme for the time-varying noise covariance problems. First of all, the cross-correlation between the innovation and residual sequences is given and proven. On this basis, a linear matrix equation deduced from the innovation and residual sequences is applied to resolve the process noise covariance in real time. Using the redundant measurements, an improved measurement-based adaptive Kalman filtering algorithm is applied to estimate the measurement noise covariance, which is entirely immune to the state estimation. The results of the simulation indicate that under the condition of time-varying noise covariances, the proposed adaptive UKF outperforms the standard UKF and the current adaptive UKF algorithm, hence improving tracking accuracy and stability.
Robotic air vehicles are used increasingly in delivering goods especially for safety-of-life applications. This paper discusses a guidance module for trajectory generation of such vehicles. An offline algorithm is developed using a navigation model to produce the required trajectory in the form of time-tagged longitude, latitude and altitude. The process is an essential requirement when an operator has to program a robotic vehicle to travel on the desired course. This problem is addressed scarcely in the relevant literature. The waypoints are generated for all phases of flight and then modified to cater for the wind disturbance parameters obtained from current meteorological information. The waypoints are uploaded to the vehicle's flight control system memory and reside there for the vehicle to follow. This paper also renders the generated trajectory on Google Earth® using Matlab/Simulink® to test the closed-loop performance. Furthermore, a Dryden wind model is utilized to generate a modified trajectory for turbulent conditions. An operator can make adjustments in the required initial heading angle so the vehicle lands at its destination even in turbulent weather. An empirical formula is also proposed for this purpose. Further work includes design of a control system to follow the generated waypoints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.