During 2015-17, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service (Forest Service), carried out a study to characterize the hydrology and water chemistry in two study areas within the Daniel Boone National Forest. One study area was within the Rock Creek drainage and the other study area included the Wildcat and Addison Branch drainages. Both study areas historically were mined for coal prior to the Surface Mining Control and Reclamation Act of 1977 and contain abandoned coal mine sites that have since been the focus of remediation efforts. Synoptic surveys of streamflow and water-quality properties (water temperature, pH, specific conductance, and dissolved oxygen) of Rock Creek were done during November 2015 and May 2016, and surveys of Wildcat and Addison Branches were done during June 2016 and May 2017. Streamflow measurements were used to quantify contributions from tributaries and to compute streamflow gain and loss in designated reaches. Discrete measurements of water temperature, pH, specific conductance, and dissolved oxygen were used to evaluate conditions during a short timeframe and for comparison between study areas. Study designs for the two study areas differed because there was an operating streamgage on Rock Creek near Yamacraw, Kentucky (station number 03410590) where streamflow and water-quality properties (water temperature, specific conductance, pH, dissolved oxygen, and turbidity) were monitored continuously, while Addison and Wildcat Branches were ungaged. Several hydrograph separation methods were used to estimate base flow and runoff at the Rock Creek gage. These data will be used by the Forest Service to evaluate the current (2018) conditions and plan remediation efforts. The water quality at Rock Creek was less affected by acid mine drainage (AMD) than the Wildcat or Addison Branches. Appreciable losing reaches, where water flowed underground, were identified in both study areas. All losing reaches coincided with karst topography. Streamflow increased in areas with openings to underground mine tunnels, known as portals. Six hydrograph separation methods (Base-flow index [BFI; standard and modified], HYSEP [fixed interval, sliding interval, and local minimum], and PART) were applied to daily mean streamflow collected from August 2015 to August 2017 at station number 03410590. The hydrograph separation methods partition total streamflow into base flow and streamflow that originated from surface runoff. Base flow typically reacts slowly to precipitation infiltration and is largely sustained by groundwater discharge. The estimated daily base flow and runoff made with the different separation methods are not highly different. On average, base flow accounted for more total streamflow than surface runoff during the study period, irrespective of method. Water temperature, pH, dissolved oxygen, specific conductance, and turbidity values were measured from July 2016 through July 2017 with a continuous monitor installed at station number 03410590. Ne...