Summary
Calcium (Ca2+) flux into the matrix is tightly controlled by the mitochondrial Ca2+ uniporter (MCU) due to vital roles in cell death and bioenergetics. However, the precise atomic mechanisms of MCU regulation remain unclear. Here, we solved the crystal structure of the N-terminal matrix domain of human MCU, revealing a β-grasp-like fold with a cluster of negatively charged residues that interacts with divalent cations. Binding of Ca2+ or Mg2+ destabilizes and shifts the self-association equilibrium of the domain toward monomer. Mutational disruption of the acidic face weakens oligomerization of the isolated matrix domain and full-length human protein similar to cation binding and markedly decreases MCU activity. Moreover, mitochondrial Mg2+ loading or blockade of mitochondrial Ca2+ extrusion suppresses MCU Ca2+ uptake rates. Collectively, our data reveal that the β-grasp-like matrix region harbors an MCU regulating acidic patch that inhibits human MCU activity in response to Mg2+ and Ca2+ binding.
Through a number of strategies nonribosomal peptide assembly lines give rise to a metabolic diversity not possible by ribosomal synthesis. One distinction within nonribosomal assembly is that products are elaborated on an enzyme-tethered substrate, and their release is enzyme catalysed. Reductive release by NAD(P)H-dependent catalysts is one observed nonribosomal termination and release strategy. Here we probed the selectivity of a terminal reductase domain by using a full-length heterologously expressed nonribosomal peptide synthetase for the dipeptide aureusimine and were able to generate 17 new analogues. Further, we generated an X-ray structure of aureusimine terminal reductase to gain insight into the structural details associated with this enzymatic domain.
Background: Bacterial pathogens must acquire nutrients for survival during host infection. Results: DalSTUV is an ABC transporter for D-alanine and contributes to virulence in vivo. Conclusion: Nutrient exchange during the host-pathogen interaction can direct disease outcome. Significance: This is the first report of an ABC transporter for D-alanine.
Pseudomonas aeruginosa uses long, thin fibres called type IV pili (T4P) for adherence to surfaces, biofilm formation, and twitching motility. A conserved subcomplex of PilMNOP is required for extension and retraction of T4P. To better understand its function, we attempted to co-crystallize the soluble periplasmic portions of PilNOP, using reductive surface methylation to promote crystal formation. Only PilOΔ109 crystallized; its structure was determined to 1.7 Å resolution using molecular replacement. This new structure revealed two novel features: a shorter N-terminal α1-helix followed by a longer unstructured loop, and a discontinuous β-strand in the second αββ motif, mirroring that in the first motif. PISA analysis identified a potential dimer interface with striking similarity to that of the PilO homolog EpsM from the Vibrio cholerae type II secretion system. We identified highly conserved residues within predicted unstructured regions in PilO proteins from various Pseudomonads and performed site-directed mutagenesis to assess their role in T4P function. R169D and I170A substitutions decreased surface piliation and twitching motility without disrupting PilO homodimer formation. These residues could form important protein-protein interactions with PilN or PilP. This work furthers our understanding of residues critical for T4aP function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.