Sick sinus syndrome (SSS) describes an arrhythmia phenotype attributed to sinus node dysfunction and diagnosed by electrocardiographic demonstration of sinus bradycardia or sinus arrest. Although frequently associated with underlying heart disease and seen most often in the elderly, SSS may occur in the fetus, infant, and child without apparent cause. In this setting, SSS is presumed to be congenital. Based on prior associations with disorders of cardiac rhythm and conduction, we screened the α subunit of the cardiac sodium channel (SCN5A) as a candidate gene in ten pediatric patients from seven families who were diagnosed with congenital SSS during the first decade of life. Probands from three kindreds exhibited compound heterozygosity for six distinct SCN5A alleles, including two mutations previously associated with dominant disorders of cardiac excitability. Biophysical characterization of the mutants using heterologously expressed recombinant human heart sodium channels demonstrate loss of function or significant impairments in channel gating (inactivation) that predict reduced myocardial excitability. Our findings reveal a molecular basis for some forms of congenital SSS and define a recessive disorder of a human heart voltage-gated sodium channel
Long QT syndrome is an inherited disorder that results in lengthened cardiac repolarization. It can lead to sudden onset of torsades de pointes, ventricular fibrillation, and death. The authors obtained a family history, performed electrocardiograms, and drew blood for DNA extraction and genotyping from 15 family members representing 4 generations of an affected family. Seven individuals demonstrated prolonged QT intervals. The authors used polymorphic short tandem repeat markers at known LQTS loci, which indicated linkage to chromosome 11p15.5 where the potassium channel, KCNQ1, is encoded. Polymerase chain reaction was used to amplify the coding region of KCNQ1. During survey of the KCNQ1 coding region, a G-to-A transition (G502A) was identified. DNA from all clinically affected but from none of the clinically unaffected family members carried the G-to-A transition. The candidate locus approach allowed an efficient mechanism to uncover the potassium channel mutation causing LQTS in this family.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.